JOURNAL OF ALGEBRA | 卷:418 |
Decomposable Specht modules for the Iwahori-Hecke algebra HF,-1(Gn) | |
Article | |
Speyer, Liron | |
关键词: Representation theory; Symmetric groups; Hecke algebras; KLR algebras; Specht modules; Decomposable; | |
DOI : 10.1016/j.jalgebra.2014.07.011 | |
来源: Elsevier | |
【 摘 要 】
Let SA denote the Specht module defined by Dipper and James for the Iwahori-Hecke algebra H-n of the symmetric group G(n). When e = 2 we determine the decomposability of all Specht modules corresponding to hook partitions (a, 1(b)). We do so by utilising the Brundan-Kleshchev isomorphism between H and a Khovanov-Lauda-Rouquier algebra and working with the relevant KLR algebra, using the set-up of Kleshchev-Mathas-Ram. When n is even, we easily arrive at the conclusion that S-lambda is indecomposable. When n is odd, we find an endomorphism of S-lambda and use it to obtain a generalised eigenspace decomposition of S-lambda. (c) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2014_07_011.pdf | 528KB | download |