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1. Introduction

Let &,, denote the symmetric group on n letters. The representation theory of &,

largely centres around studying a certain family of F&,,-modules Sy, called Specht mod-

ules, which are indexed by partitions A of n. When the characteristic of F is zero, this fam-

ily gives a complete set of pairwise non-isomorphic F&,,-modules. The modern standpoint

on the theory of Specht modules has been developed by James and can be found in [9].
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The Iwahori-Hecke algebra % 4(&,) of &, is a deformation of the group alge-
bra FG,,. One motivation for its study is its representation theory — it provides a bridge
between the representation theory of the symmetric and general linear groups. Here we
consider it interesting in its own right.

In the series of papers [5-7], Dipper and James laid the foundations for and built up
the theory of the Iwahori—-Hecke algebra from the ground to a point where much was
understood about its representation theory, at least when the quantum characteristic
(denoted by e) is not 2. % 4 has a theory of Specht modules analogous to that for F&,,,
which describes the classical situation as a special case. Combinatorics of partitions and
tableaux play an important role here, as in the classical case. Interestingly, results that
hold for F&,, in characteristic p can often be restated for J% , at quantum characteris-
tic p. An example of this is the fact that Specht modules for F&,, are indecomposable
when charF # 2 and Specht modules for /% , are indecomposable when e # 2 (that is,
q #-1).

When e = 2, we would like to fill in some gaps; in particular we would like to know
which Specht modules are decomposable.

In [2], Brundan and Kleshchev showed that, remarkably, J% , is isomorphic to
a certain Khovanov-Lauda—Rouquier algebra. Immediately, this leads to a non-trivial
Z-grading on J% 4 and therefore FG,,. Working from the KLR perspective, a whole the-
ory of graded Specht modules and graded homomorphisms can be built up. One recent
development has been made in [10], where (in an even more general setting) the au-
thors give a presentation of graded Specht modules by generators and relations. They
construct a homogeneous basis for S indexed by the standard A-tableaux.

In this paper, we will use the KLR machinery to work with % ,. We will determine the
decomposability of Specht modules for hook partitions at e = 2, building on Murphy’s
work on the special case ¢ =1 in [8].

In Section 2, we will outline the necessary preliminaries and state some established
results which we will call upon.

In Section 3, we look at Specht modules for hook partitions. We begin some prelimi-
nary work towards constructing endomorphisms of these Specht modules.

In Section 4, we use the results of Section 3 to recover a result regarding the endomor-
phism algebras of Specht modules for hook partitions when n is even, and thus determine
their indecomposability.

In the crucial Section 5, we examine the actions of the KLR generators on a special
subset of the homogeneous basis for Specht modules when n is odd.

Finally, in Section 6, we construct an endomorphism f of Specht modules S, for n
odd. We calculate some eigenvalues of f and thus determine when .S can be decomposed
into a direct sum of non-trivial generalised eigenspaces. In the case A = (a, 1?), it turns
out some extra work is needed to arrive at our final result. This is achieved reasonably
easily in light of the work done to establish KLR generator actions on the homogeneous
basis.
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2. KLR algebras and their Specht modules
2.1. The Iwahori—-Hecke algebra

Definition 2.1. We define the Iwahori-Hecke algebra & = % 4(S,,) of the symmetric
group G,, to be the unital associative F-algebra with presentation

Definition 2.2. Define e € {2,3,4,...} to be the smallest integer such that 1+ ¢+ ¢ +
-+ ¢t = 0. If no such integer exists, we define e = 0. We call e the quantum
characteristic of €.

TT; =T;Tifor1<i<j—1<n—-2

(T, —¢)(T;+1)=0fori=1,2,...,n—1 >
LTy =TTy fori=1,2,...,n—2

When e = 2 (that is ¢ = —1), 2 is isomorphic by [2] to a Khovanov-Lauda—Rouquier
(KLR) algebra with the following presentation:

Generators

Yls v oy Yns U1y W1, e(i) forallie {0,1}"

Relations

0
e(i) =0 ifip =1
)

Yre(i) = e(s, - i)Y, where s, -4 means iy ... 40— 194180y ... ip

YsYr = YrYs

YsPr = VrYs ifs#£rr+1
Yrore(i) = Yryrie(i) if iy # ip41
Yrpre(i) = (Yryri1 — D)e(i) if 4y =41
Yr1re(i) = ryre(i) if i # ir41
Yr1¢re(i) = (Yryr + 1)e(i) if 4y = tr41
Ysthr = Pribs ifs#r+1
Yre(i) =0 if iy = iy
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Pre(i) = —(yr — yri1)’e(d) if 4y # drp1
wrwr"'lw"’e(i) = ¢T+1wT,(/)T+1€(Z.) if Z.r = i’l‘-i-l or i”‘+1 = Z’T—&-Q

wrwr+1¢r6(i) = (¢T+1¢r¢r+1 +Yr — 2Yrp1 + yr+2)€(i) if iy # dpyp1 # drga
2.2. Specht modules

The Specht modules are an important family of .7#-modules which are indexed by
partitions of n. They are central in the representation theory of 7, and have their
counterparts in the KLR world. Thanks to the Brundan—Kleshchev isomorphism, we
will be treating .77 as a KLR algebra and as such would like to look at the Specht
modules in this setting. We will use a presentation given in [10, Definition 7.11]. Note
that in [10], the authors call this the column Specht module.

Definition 2.3. Let A = (A1, Ao, ...) be a partition of n. Then we define the Young diagram
of X\ to be

N = {(,) |7 <M} N

We define a node of A to be an element of [A]. Finally, we define a A-tableau to be the
diagram [\] with nodes replaced by the numbers 1,2, ..., n with no multiplicities.

Notation. We write A F n to mean A is a partition of n. We denote by A’ the partition
conjugate to A. That is, the partition obtained by interchanging rows and columns of
the Young diagram of A. A tableau is said to be standard if entries increase along the
rows and down the columns. We denote the set of standard A-tableaux by Std(\A). If T'
is a A-tableau, we write j |7 j+ 1 to mean that j and j 4+ 1 are in the same column of T’
and that 7 + 1 is in a lower row than 7 in T

Definition 2.4. Let A F n and T € Std(\). Assign each node (4,5) of A a residue j — i
(mod e). Denote by i = i, (T) the residue of the node in T occupied by k. Then we
define the residue sequence of T as ir = (i1,42,. .- ,1in).

Definition 2.5. Denote by T the standard A-tableau with entries written consecutively
down the columns. We call T the initial tableau. Denote the residue sequence of T}

by 7;)\.

416]

Example. Let A = (3,2,1) and e = 2. Then T) = and i) = (010100).

eoro]=
[

We now introduce the Specht modules. Since we will only be interested in those Specht
modules indexed by hook partitions, we can give a fairly simple looking presentation.
For general partitions, the Garnir relations are much more complicated.
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Definition 2.6. Given A - n, the Specht module S} is the module generated by 2 subject
to the following relations:

YN = 0 for all k‘;

e(i)zy = 84, 2x for all i € {0,1}™;

iz =0forall j=1,...,n—1such that j |7, j+1;

. The homogeneous Garnir relations defined in [10, Definition 7.11].

=W N =

Unless there is possible confusion, we shall write z = z) for the sake of tidiness.

Remark. Suppose we are looking at a hook partition A = (a, 1°). Then relation 3 can be
rewritten ¢;z = 0 for all 7 < b+ 1. In this case, the Garnir relations in 4 are 1;z = 0
for all j > b+ 1 and Y1923 ... Ypr12 = 0. So we have

Staary = (z | e(i)z = biay, yhz =0 Vk, ¥z =0Vj #b+1, Y1¢2... Yypy12 =0).

Definition 2.7. Let A+ n and T € Std()\). Define wr € &,, to be the permutation such
that wrTy = T. Let s; be the basic transposition (i,7 + 1). Fix a preferred reduced
expression w = Sy, ...y, for each element w € &,, where m is minimal and 1 <
T1y.. oy Tm <1 — 1. Define ¢, =95, ... %5, . Finally, define v = ¢y 2.

Theorem 2.8. (See [10. Corollary 7.20].) Let A & n. Then B = {vp | T € Std(\)} is
a basis of Si.

Remark. Note that the elements v depend on choices of preferred expressions of elements
of &,,. However, when A is a hook partition, these expressions are unique up to applying
commutation relations, and hence vy is well-defined.

We now look at some basic results for Specht modules which will be useful for our
purposes.

Theorem 2.9. Sy is decomposable if and only if Sy is.
Proof. The result follows from [6, Theorem 3.5]. O
Theorem 2.10. If e # 2, or if A is 2 regular, then Sy is indecomposable.

Proof. The result follows from [7, Corollary 8.7] using a similar argument to that used
by James in [9] to prove the analogous result for the symmetric group from [9, Theo-
rem 13.13]. O

In view of this last result, we seek to classify decomposability of Specht modules S
when ) is 2-singular and e = 2. We will focus on the special case where A\ = (a,1°) for
b>2.
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3. Specht modules for hook partitions

Decomposability of Specht modules for hook partitions was solved by Murphy in the
case of the symmetric group:

Theorem 3.1. (See /8, Theorem 4.5].) Suppose char F = 2. Then S, 1v) is indecomposable
if and only if n is even or a — 1 = b (mod 2F) where 2871 < b < 2L,

Using this result, we will be able to assume char F # 2 where necessary. The following
result will also reduce our workload later on.

Theorem 3.2. Suppose a is odd and b is even. Then S(4 1v) is decomposable if and only
’Lf S(a+1’1b+1) 18.

Proof. For any r > 0 and any 4, functors

ez(.r) : A, -mod — H;,-mod
fi(r) : J,-mod — H, 4 -mod

are introduced in [3, Section 2.2]. These functors are exact, and have the following
property: if M is a non-zero module and we let &;(M) := max{r | ez(»T)M # 0}, then:
(e:(D))

[3, Lemma 2.12] If D is a simple module, then e; D is simple.

Since egr) is exact, we have &;(D) < ¢;(M) when D is a composition factor of M,
and so by the above lemma we deduce that the composition length of egsi(M))M is at
most the composition length of M, with equality if and only if &;(D) = &;(M) for all
composition factors D of M.

A corresponding result holds with f;, ¢; in place of e;, ;.

Now consider Specht modules. By [3, Lemma 2.4] and [3, Eqs. (7) and (8)]

can be interpreted as restriction and induction, respectively, followed by projection onto

, ez(»r) and fi(r)
particular blocks. In view of the block classification for Hecke algebras of type A [11,
Theorem 2.11] and the branching rules for induction and restriction of Specht modules
([5, Theorem 7.4] and [1, Proposition 1.9] respectively), we deduce that €;(Sy) is the
number of removable nodes of A of residue ¢, and ez(-ei(sk))S \ is the Specht module labelled
by the partition obtained by removing these nodes. A corresponding statement holds
for f; and addable nodes.

In particular, when e = 2, a is odd and b is even, let A = (a,1%) and p = (a+1,1°*1).
Then £1(S,) = ¢1(Sy) = 2, and €5, = Sy, fP5) = S,

In view of the above results, this means that Sy and S, have the same composition
length and that egQ)D # 0 for every composition factor D of S,. Hence (again by ex-
actness) egz)N # 0 for every submodule IV of S,,. Hence if S, is decomposable, then so
is S). The same argument the other way round shows that if S is decomposable, then
sois S,. O
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For the remainder of the paper, we fix A = (a,1°) and n = a + b. Recall that

Sy = <z ‘ Yz =0VEk, Yjz=0Vj#b+1, P1va... Y12 =0, e(i)z = 5i)“z>.

Suppose f is an J#-endomorphism of Sy. z = e(ir)z, so we have f(z) € e(ix)Sh.
Now consider the basis Z. [4, Lemma 4.4] tells us that e(i)vy = &; 4,07 for any T €
Std(A). Hence B Ne(i)Sy = {vr
elements in 2 := ZNe(in)Sy = {vr | ir =ir}. This is at the core of our approach to

i7 = i}. In particular, f(z) is a linear combination of

understanding End s (S)).

Definition 3.3. When )\ = (a, 1%), we define the arm to be the set of nodes {(1,2), (1,3),
.,(1,a)} of X and the leg to be the set of nodes {(2,1), (3,1),...,(b+1,1)}.

Lemma 3.4. Suppose b is even and vr € 9. Then for all1 < i < [n/2]—1, 2i+1 appears
directly after 2i in T. That is, if 2i is in the leg of T then 2i+ 1 is directly below it, and
if 2i is in the arm of T then 2i + 1 is directly to the right of it.

Proof. In defining iy, we assign all nodes of A in which 7T contains an even entry a 1
and all others a 0. First, we note that since b is even and vy € &, the final node in the
leg of A has residue 0. This ensures that if 27 is in the leg of T' there must be some entry
immediately below it.

By induction on ¢ > 1, assume that 2i + 1 appears directly after 2¢ in 7', for all 7 < k.
Suppose our assertion is false for i = k. We assume without loss of generality that 2k is
in the leg of T" and 2k + 1 is in the arm. Now by induction any even number, 2j < 2k,
is immediately followed by 2j 4+ 1. This forces 2k + 1 to be adjacent to 25 + 1 for some
j<k,andvr ¢ 2. O

The fact that entries must stick together in these pairs motivates our next definition.

Definition 3.5. We will call the pair of entries 2, 2i + 1 for 1 < i < [n/2] — 1 a domino.
We will denote the domino by [2i,2i + 1] or D;. We define a domino tableau to be any
A-tableau T such that vy € 2. We denote the set of domino tableaux by Dom()).

Remark. 2 = {vp | T € Dom(\)} is a basis of e(iy)S).

Now, we separate our problem into cases where a and b are odd or even. When b is
even, we have iy = 0101...01. If b is odd, however, we have i, = 0101...011010...10,
where we have a repetition in the positions b+ 1 and b + 2.

We will now begin by solving the simplest cases, where n is even.

4. Decomposability of S, 1») when n is even

First, we will look at the case where a and b are both even.
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Lemma 4.1. Suppose T € Std(\) and 1 <i <n. Ifi,i+1,...,n all lie in the arm of T
then Y,ur = 0. If i lies in the leg of T and i + 1 lies in the arm, then Y;vr = vy, where
U is obtained from T by swapping i and i + 1.

Proof. First, suppose 4,7+ 1,...,n all lie in the arm of T for some 1 < ¢ < n. Then v
cannot possibly involve v; for any j > ¢ — 2. It follows that %; commutes with each
generator v; appearing in vy and the result follows from the Specht module relations.
To prove the second part of the lemma, we note that wy'(i) < wy'(i 4 1). This is
easily seen since w;l( j) is the number that occupies the same node in T that j occupies
in T'. Hence if s;, 4, - . . 85, is a reduced expression for wr, then s;s;, si, . .. s;, is a reduced

4

expression for s;wr. So Y;vr =vy. O

Theorem 4.2. If a and b are both even, then End s (Sy) is one-dimensional. In particular,
S is indecomposable.

Proof. Suppose f € End(S)). Then by the above remark,

fz)= Z apvr for some ar € F.
TeDom(\)

Then by Lemma 4.1, acting on the left by ,,—; annihilates all vy for tableaux T which
don’t have D n—2 in their leg. Now, in the remaining tableaux, Lemma 4.1 gives us that
Y107 € B\ D. Since 1 f(z) = 0, we must have ar = 0 for all T which have Danz
in the leg.

In this way, we act on f(2) by ¥n+1-2; for i =1,2,...,(a — 2)/2 to annihilate all vp
for tableaux T which don’t have D n—2i in the leg. At each step, we deduce that ar =0
if T has D%m in the leg.

Therefore f(z) = az for some a € F and the result follows. O

Next, we look at the case where a and b are both odd.

Theorem 4.3. If a and b are both odd, then End (Sy) is one-dimensional. In particular,
S\ is indecomposable.

Proof. The result follows from Theorem 4.2 by application of Theorem 2.9. O
5. KLR actions on 2 when n is odd

When n is odd, much more work must be done. By Theorem 2.9, we can assume
throughout this section that b < n/2.

Using Theorem 3.2, we can focus on the case where a is odd and b is even, as it is
slightly easier to work with. The case where a is even and b is odd will then follow.

Recall that 2 = {vp | T € Dom(\)} is a basis of e(iy)Sy. At this point we introduce
some new notation which is much needed to keep things tidy!
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Definition 5.1. We define ¥; := 9;9;11%;_1%;. For 3 <z <y < n — 2 two odd integers,
we then define:

Y )
Ul =00, 5.0, and U1 =00, .. .0,

If y < = we consider both of the above defined terms to be the identity element of our field.

Remark. Given some T € Dom(\), let 2d be the number of entries in the leg of T" which
differ from the entries in the corresponding nodes of T. Notice that these will consist of
the final d dominoes in the leg, since T € Std(\).

Let j1,..., 7} be the odd numbers (in ascending order) in the d dominoes in the leg
of T" which differ from the corresponding entries in T and define j; := j; — 2 for each 1.
For example, if A = (7,1°) then

89 10[11]12013] 4]5]6]71011]

T\ = Let T =

BE NN

==
&[Rle]or]ee]ro]—

Then d = 2 and we see that j; = 7 and jo = 11.
Now, we can see that v can be written as the reduced expression

J1 J2 Jd
b+3—2d b+5—2d b+1

We will refer to this as the normal form for vp. Notice that j;41 > j; for all i =
1,...,d — 1. It will be useful to note that if vy € & is in our normal form, then any
expression obtained from it by deleting ¥ terms from the left is also an element in 2.

Definition 5.2. Let T' € Dom(\). We define the length 7(T) of T to be the number of ¥
terms in the normal form of vp.

In the next three results, we examine the actions of the generators of J# on the
elements of Z.

Lemma 5.3.

e(in)¥; = Pje(in) for all j,
yWy =Wy, forallk > j+3 and for allk < j—2,
Ol = Wyhy,  for allk > j+3 and for all k < j —3.

Proof. Clear from the definition of ¥; and the defining relations. O
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Proposition 5.4. Suppose T € Dom()). Then

yror =0 for all k; (4)
Yrvr =0 for all even k; (B)
wl'UT =0. (C)

Proof. Let (A,) denote the statement that (A) holds for all T with »(T) = r, and
define (B,.) similarly. We first prove (A,) and (B,) simultaneously, by induction on r.

First we must show that (Ag) and (Bp) hold. In this case, v = z and the defining
relations give our result immediately.

J1 J2 Ja
Now, letvp =¥ | ¥ | ...¥ | z be in normal form for some d, and define
b+3—2d b+5-2d b+1
J2 Jd
Vrgy =¥ L Pz
b+5—2d b+1

We will show that (A,_1) and (B,_1) = (A,). We split our problem into 5 cases:

1. k=j1+2,
2. k=j1+1,
3. k=,

4 k=4 -1,
5. All other k.

We can now solve each case quite simply!

Jj1—2
L. Ui 4201 = U505, 1 (Ug r2i1e(sy, - ix) 0¥ L vng,
b+3—2d
J1—2
=1y DY L ory,
b+3—2d
j172 j172
= w]l y]lw \l’ II'}T(Q) + ,11[}]1 wj1—111/}j1!p i‘ UT(2>
b+3-2d b+3-2d
—_————
—0by (Ar—1)
j1—2
= (Vi 15 -1 — Yi—1 + 25 — v+ L vrg,
b+3—2d
J1—2 j1—2
=Vj 1 Y% L vt~y L ury,
b+3—2d b+3—2d
=0by (Br-1) =0by (Ar_1)
J1—2 J1—2

+2y;, ¥ | UT(z) —Ypa¥ | UT(z)
b+3—-2d b+3—2d

=0by (Ar-1) =0by (Ar—1)
=0.
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Jj1—2
Yjr+1vT = (yj1+1'(/1j1€(8j1 .ZA)),(/leJ!‘lel_lw]’le *l’ dUT(2)

= wjleﬁrl (yjlelfle(sjl ))¢]1LP \I/ UT(2)

b+3—-2d

- w]le1+1(¢]1 1Y -1+ 1)¢]1¢ 3¢ deT(z)

-2 -2
:g/ 1 Yji— 1W *L UT(z) +¢Jﬂ/’11+1¢11g’ \L UT(z)

—0by (A,1)
J1—2
= Wn1¥n Vi T un =201+ yp2)? L org,
b+3—2d
= 0 by (A»,‘,l) and (Brfl).
. Jj1—2
Y vr = (Y Yne(si i)Vt 7 L vt
b+3—-2d
. J1—2
= V5 (Y18 +1e(s5, - \)) Vi1 L or,
b+3-2d
Jj1—2
=V (Wj+1Yj42 — D¥ji1; ¥ L vr,
b+3-2d
Jj1—2 ji1—2
=Y yj1+2!pb+3$ 2dvT(2) - (wjlflelelfl — Yji—1 T 2y;, — y]1+1>w »L d'UT(Q)

=0by (Ar_1)
=0 by (Arfl) and (Brfl).

Jj1—2
Yjr—107 = 3 g1 (Y —19j,—1e(s, - M))#}jlwb%} LT

= Y Vi +1(Yj, 1Y, — )%1@ i VT )

+3—2d
J1—2
=Y, ¥+ UT(3)
b+3—2d

=0by (Ar_1)
J1—2

- (¢j1+1’(/)j1 Yj+1+ Y — 2541 + yj1+2)g/ 1 UT(ay
b+3—-2d

=0 by (A-—1) and (B,—_1).

. Now suppose k # j1 + 2,51 + 1,41 or j1 — 1. Then

j1—2
yvr =¥ | VT by Lemma 5.3
b+3—2d

=0 by (Ar—l)'
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Next, we show that (A,_1) and (B,_1) = (B;). Once again we split this into the
following cases:

1Lok=j1 41,
2 k=7j -1,
3. All other k.
) j1—2
L. ¢j1+1’UT = (¢j1+1¢j1¢j1+1€(5h . 7')\))¢j1—11/)j1¥7 ~|( UT 2y
b+3—2d
. j1—2
= by, 41 (5,05, 1, e())P L opy,
b+3—2d
j1—2
=551V 195V -1 — Y -1+ 2y — v ) L org,
b+3—2d
=0 by (A.—1) and (B,_1).
. j1—2
2. Vi 107 = (Y5, 195,05, —1€(sj, -ix)) V1198 L vz,
b+3—2d
. Jj1—2
= b5, 5, -1 (5,5, 195, e(ix)® L vpy,
b+3—2d
Jj1—2
= Y, %5, -1 (Vg 4105 Vi1 T Y5 — 2U5,41 + yj1+2)Wb+3¢ LT

=0 by (A.—1) and (B,_1).

3. Now suppose k is even but k # j; + 1 or j3 — 1. Then

Jj1—2
Ypvr =V ¥ | vr, by Lemma 5.3
b+3-2d
=0 by (Br—l)-

And so, our results follow.
Now, we prove (C'). If d < b/2, then W3 does not occur in v, and so 11 commutes with
Ji g2 Jd
all ¥ terms in vy and the result is clear. So suppose d = b/2. Then vy =¥ [ ¥ ... ¥ | z.
3

5 b+1
It’s easy to see that

J(i+2d—b+1)/2 J(i+2d—b+1)/2

(R { =V { YipoVir3(P1va .. Yiyo).

i+2 i+4

Applying this for s = 1,3,...,b— 1 in turn, we obtain

Lo = Wﬁwjf . jf Y3Vq - Ppr2P12 a2,
5 7 b13

which is zero in view of the Garnir relation ¥1¢o ... Y112 =0. O
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Remark. A shorter but less direct proof of (A,) and (B,) can be given using the grading
on ¢ and Sy, closely mimicking the proof of [10, Lemma 4.4].

Lemma 5.5. Suppose j is odd and T € Dom()). Then

1. wj!pj’UT = _2wj'UT7
2. ;¥ 2Wvr = Yjur,
3. Yihjrovr =0,

4. VW _oWvr = Yjur,
5. LDjQZJj,Q’UT =0.
Proof.

L PWie(in)or = (Yie(s; - ix))jp15-1¢0r
= (=y; — ¥i 1 + 2y9541) Yjp1j—1bjur
= — 1y (Y5 i-1e(s; - ix))gjor
— yj1 (yj1951e(sy - in)) Y100
+ 2y; (yj41¢j41e(s) - ix)) i1 07
— i1y (Yi—1yj-1 + D)hjor
= Yi+1(Yj1942 — DYj1¢jor
+ 2y (V119542 — VY1907
= — j1y05vr + Yi—1yjvjur — 2(yji—1e(s; - ix)) v
= — Yy n0r + Yiavyvr — 2(Y-1y-1 + Dvjor
— 2jur.

2., 3., 4. and 5. We have

VW aWe(in)or = Yivatjva (Vii1ie(sjva - 85 - ix)) it 19;
= i 29 43(Vj10505 11 + Y5 — 2Y541 + Yj2) V21019507
= Y 120430i105 (Vj410j 420 41e(85 - ix))¥j_10jvr
+ ¢j+2¢j+3¢j+27/1j+1 (yﬂ/]j—le(sj : iA))ijT
= 2049043042 (Yj 1054 1e(s) - ix))j—10jur
+ 2043 (Y20 42€(55 - ix)) Vi 410019507
= o311 Y2051 Y50
+ Yjrotjratjrothi (Yi—1yj—1 + Djor
= 20 2V513Y542(Vj41Y542 — DYj1¢j0r
+ Vi 12013V 12Y i+ 31519501
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=V 120007 + Yjroj13¥iretbi 1195 yi—1vr
——
=0
+ (Yjr2vj3tj12€(s) - ix) )07
= 2900132015195 YjaovT
——

=0
+ 2(Vj2vj430j12€(5 - ix)) 19507
+ Y213V 20105195 i30T
~
=0
=V oY 0vr + (Vjg3¥jpoivs + Yjr2 — 2Yj43 + Yjt4a)
“i1ior + 2243 + Yjre — 2U543 + Yira) V10507
=V, 120007 + V1301000105 Yjp3vr
——
=0
+ (yj+2¥j+1e(s5 - ix)) V501 + 205430 421515 Yj 4307
N———
-0
= V2% 207 + (Y1941 + Dhjor
= U, 12U 20T + Yivr + i1y 410507
=, Wi 0vr + Y5ur + Y175 YT
~—~

=0

We also have

VW _oWse(in)vr = ¥j_otbj_s(Yjhj_1be(si—a - 85 - ix))j—2Wjp19i— 10507
= ¥j—athj—s(Vj—1¥%i-1 — Y1 + 2Y5 — Yi+1) 2t adur
= o310 (Vj_10j_2tbj_1€(s; - ix) )1 07

—¥j_2tj_3(yj—10j—2e(s; - ix))Vj410j—10 v
+ 20 _othj s —o¥j 41 (yj¥—1e(s; - ix)) o
—¥j_2tj_3¥j 2 (yj+10j41e(s) - in)) 10 v
= j—2thj—sj1i—atbi1hi—atbjribivr
— Vj—oj—3j_2yj—2¥jt1¢—19vr
+ 2052530241 (Y11 + )b
—Yj—2¥jsj_2(Vjt1yj42 — D)bj_1bsor
=V oWt ovr — Pj_2¥j_3j_o¥i 1917 w
=0
+ 2(j_athj_s1hj—se(s; - ix))Vjp10507
+ (Yj—2hj—_sthj_ze(s; - ix))bj—1950r
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=W _o¥1h;_ovr
+ 2(thj—3j—2tbj—3 — Yj—3 + 2yj—2 — Yj—1)¥j 10507
+ (Vj—sj—2j—3 = Yj—3 + 2yj—2 — yj—1)¥j—1jvr
= Ui _oWithj vy + 2(0) — (yj-195-1€(s) - in)) jur
=V oWt ovr — (Yj—1y; — DYjor
=Y oW _svr — 0+ Yjvr.

So we have

W 2¥ur = Yjur + VoW avr (%)
’(/Jj!pj,QLZ/jUT = %‘UT + ij,Qijj,QUT. (**)
Now all four statements will follow if we can show that 3 and 5 hold. We will pro-

ceed by proving both simultaneously by induction on r(T'). That is, we will prove
that

Uthjpovr =0 for any odd j and r(T) =, (4,)
Vit _gvr =0 for any odd j and r(T') =r, (B;)

by simultaneous induction on 7.

First, we prove that (A4,) follows if (A,) and (B;) hold for all s < r.

(Ap) is clearly true. We have ¥;1p; 102 = 1119 _110j121j2 = 0 since at least one
of 1, ;42 must annihilate z.

J1 J2 Jd
Now let 7 > 0. Suppose vy =¥ | ¥ | ...¥ | zisin normal form and define
b+3—2d b+5-2d bt1
Jj1—2 J2 Ja
vpr =% | W | LU 2
b+3—2d b+5—2d b+1

If j1 > j+ 6 or j1 < j — 4, then we clearly have ¥;v; v = ¥, W9, 0v7 and our
result follows by (A,_1). So we break our proof up for the remaining four possibili-
ties. ) )
J2 Jd
(a) Suppose ji = j+4. We will write vy, =¥ | ... ¥ | 2. Ifb+3-2d=j+4
b+5—2d b+1
also, we have

Tihjravr = VoW ravmy,,

:O7

as we have a 1; which commutes with everything to its right, given that the
lowest indexed ¥-term in vr,, is ¥j16.
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Ifb+3—2d < j+ 4 we have

(¢]+2%+4%+2)W i 5 VT

j
=Vj(Yj2 + ¥jra¥oi4)¥ | vr, by (¥)
b+3—2d

J
=0 by (A;) forsome s <r, as¥ | v, €.
b+3—2d

(b) Suppose j1 = j + 2. Then we have

Vi p2¥jpovr = —2¥j1pjovr by part 1,
=0 by (A1), asr(T") =r—1.

(¢) Suppose j; = j. Then we have

Y p2¥jur = —2Wth0vr by part 1,
=0 by (Ar—l)-

Js Ja
(d) Suppose j1 = j — 2. We will write v, =¥ | ...¥ | 2 Here, we must
b+7—2d b+1
divide into further subcases.

i. Suppose jo = j + 4. Then we have

Vithjrovr = Wit oW i Wi%ﬂ%ww i L,V

b+3-2d j16
=y i 1414 i (Vj+2¥j4a¥j42)¥ ¢ VT,
J+6 © b+3-2d b+5-2d

J2 Jj=2 J
=V LY | (Y2 + ¥ ¥ L vrg by (%)
it6 " b+3-2d b+5-2d

J2 Jj—2 J
=V 1 Ui | ¥ | wp, +0
Jj+6 b+3—2d b+5-2d

J
by (As) for some s <7, as¥ | g, € 7,
b+5-2d

-2
=0 by (Ay) for some s’ <r, as ¥ ¢ v L vt € 9.
b+3-2d  b+5-2d

ii. Suppose jo = j + 2. Then we have

—2

Yitjiovr = jw]-‘r?q/ i oy le/j-i-2!pb 5¢2 UT 5

= v i Vj 2P 0¥ i VT
b+3-2d b+5-2d
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j—2
= -2V, W ¢ degW ¢ vT(g) by part 1,
3—2

Jj=2 J
=200 | W | g,
b+3-2d b+5-2d

-2

=0 by (As) for some s < r, as ¥ ¢ ' ¢ vr,, € 9.

b+3-2d b+5-2d

iii. Suppose jo = j. Then we have

j—2 j—2
Yithjrovr = J"/}j+2y7 ~L 414 J/ VT3
—2d b+5-2d

= wj¢j+1wjfle+21/}jf2(wﬂ/}jflee(sjfZ £55+1x))
=y

j—4 j—2
“Yi—sPj_etiia; ¥ L W ur,

b+3—-2d b+5-2d

= €D

243

= u (V10051 — Yj—1 + 2yj — Yjr1)Vi 302195 1urn

= 193 (Y 1¥—2ti1e(s; - i) )10
— Yuthj_3(yj—1bj—2e(s; - in)) Vjp1hj 1050
+ 20053t athj 41 (Y0 —1e(s; - in))jorm
— uthi a2 (Y195 1€(55 - ix)) 1050w
= V10032 j 1Yo j 1 v
= Yuthj -39 —2Yj—2¥j 1150
+ 201hj 3 —2thj 41 (Vj—1y-1 + L)ojore
= Vutj—shj—2 (V142 — DY 1djure
= Vi1V —3Yj—2 Y15 _ovpr — 0+ 0

—0by (B,_2)
+ 29050105 102 Ui 2 30 o210
o
=0+ Y j 09310 2tb;19jv7n
= 20" (¢hj—2t0j 30 —2e(s; - ix)) 4195070
+ P (Vi—2tj—athjae(s) - ix) ) 1070
= 20" (Yj_3¥j—2¥j—3 — Yj—3 + 2Yj—2 — Yj—1)Vj 10017
" (i _3vj 23 — Y3+ 2yj—2 — Y1) 19T
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= 2" Y3 _ovi10;  Yi_svpr —04+0-0
———

=0as j—3iseven

+ w*wjf?’l/]j*zwj*le Yj—zvpr —0+0
N——
=0

— " (yj_1j—1e(sj - ix))worm
=" (hi_1y; — L)oo

=" Y1y 10 + P v
=0+ 92070 .

=0by (A,_2)

Next, we show that (B,) follows if (4) and (B;) hold for all s < r.

For (By), we have W1 oz = ;9119010212 = 0 as at least one of 1, 1;_o
must annihilate z.

Now suppose r > 0.

If 1. 2 j+ 4 or j1 < j— 6, then we clearly have ¥;v;_ovr = ¥, W1 _ov7 and our
result follows from (B,_1). Once again, we break the proof up for the remaining four
possible values of j;.

(a) Suppose j; =j+ 2. If b+ 3 — 2d = j + 2 then we have

Vihj_ovr = Wihj oW ovT,,

=0

as 1j_o commutes with everything to its right, since the lowest indexed term in
’UT(2) is Wj+4.
If b+ 3 —2d < j, we have

j—2

i
Uirhjovr = VoW oW W L vr,
b+3—2d

= V0511905195 a¥iratits (Vi e(sive - 55 - ix))
—ct.

j—2
Vjpetii ¥ L vry,
b4+3-2d

j—2

= 1/1*(¢j+11/1j1/1j+1 +vy; — 2yj+1 + yj+2)1/1j+21/1j+11/)j711/1jwb ?}i deT(z)
+ —

i—2
= Pty (Y18 +20541€(85 - 00)) 190 g VT,
b+3—2d

j—2
+ it (y-re(s; - in) @ L vrg,
b+3—2d
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j—2
— 202 (i1 1e(sy - in)) 1% L opy,
b+3-2d
. i=2
+ o (Yjrotjr2e(sy - ix))jhj_ ;@ VT,
b+3—2d
j—2
= 0120208 L v,
b+3-2d
j—2
+ vtbjroiv1 (Yj—1yj—1 + DY@ L v,
b+3—2d
j—2
=205 2(Vj11yjr2 — DY@ L org,
b+3-2d
j—2
+ tbipayirainia ¥ L vry,
b+3—2d

j—2
= Vb2 YW 1 ury,
b+3—2d

=0by (Ar_2)
+ 0+ ¥t 112 (Vjr2tbjrathjre(s; - in))
j—2
iV L vr,
b4+3-2d
— 0+ 20501012 (Vjr2tjrathjroe(s; - ix))
j—2
i L vr,, +0
b+3—2d
= (V04105102 (Yj13¥j 120543 + Yjtr2 — 243 + Yjra)Vj41
+ 20010510 —2 (V131213 + Yjr2 — 2Yj43 + Yj4a)j—1)

j—2
¥ L vy,
b+3—2d

j—2
= 0+ Y0j4195-10-2(Yj+20j1e(s; - ix))%wb%i LT 0+0

+04+0-0+0
j—2
= Yjj 1010 —2(Yjr1yi+1 + D L vz,
b+3—2d

j—2
=0+"h; 20 | vrg,,
b+3—2d
—0 by (B,_a).
(b) Suppose j; = j. Then we have

!pjil)j,Q’UT = —QQ/j’(/)j,QUT/ by part ].,
=0 by (Bs—l)'
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(¢) Suppose j; = j — 2. Then we have

szpj,gvT = —2Wj’(/)j,2’l)Tl by part 17
0 by (Br_1).

(d) Suppose j; = j — 4. We divide into subcases.
i. Suppose jo = j + 2. Then we have

Vjthjovr = W15 oW _4¥ i v i ¢g+2WW i VT,
b+3—2d j+d 2d

—¢jw1+1"/h 1% QW] ns \I/ v \L(,(/)j j+2w )L[/ i« VT3
b+3—2d j+4 2d

Jj—6 J2
= Y0102 a¥ | W L (Y + Wa¥ihji0)
b+3-2d j+4
j—2

WL wp, by (+),
b+5—-2d

Jj—4 J2 Jj=2
=Wy 0¥ | W LY | v,
b+3—2d j+4 b+5—2d
j—2
+0 by (A) for some s <7, as¥ | g, €7,
b+5-2d

j—4 J2 Jj—2
=0 by (By)forsomes <r,as¥ | W |W¥ | VT3, €Y.
b+3—2d j+4 bt5—2d

ii. Suppose jo = j. Then we have

j—4 j—2
ihjovr =W oW | VW | ugy,
b+3-2d ~ bt5-2d

j—4 Jj—2
= —2!l7j1/1j_2w \l, v \L UT(g) by part 1,
b+3—2d b+5-2d

j—2
=0 by (BTfl)7 as ¥ i, v \I, UTs € 2.
b+3-2d b+5-2d

iii. Suppose jo = j — 2. Then we have

Jj—6 Jj—4
Uithjovr =W oW aW; oW | ¥ | urgy
b+3-2d b+5-2d

=W a5 (Vo3 _se(Sj—a - Sj—2 - ix))
“j_atpi 1% 3 _ouTr
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= Ujtathj—5(¢j—s¥j—2%j-3 — Y3 + 252 — Yj-1)
i 413 _ovTr
= Uirhj—athj—5vj-3j-2 (Vj—31j-avj-se(sj—2 - ix))¥j-1¢j 2077
— Ujhj—athj—5 (Yj—3j-ae(sj—2 - ix) ) j 193 —avrn
+ 2055 atj st athj—1 (Yj—2i—se(sj—2 - i\))Yj—2vT
— Ui athjstj_a(yi—10j—1e(Sj—2 - ix))Wj—3W;—2vTn
=Y a¥j—50j—3%j20j_aj 30 _athj 1 —2vTn
— Y —athj—5Vj—aYj—a¥j—19j -3t —2vpn
+ 2050 a5 i—ai—1(Yj-3yj-3 + 1) _o2vrr
= VUit aj—5¥j—a(Yj-1y; — 1)Pj—3j_ov7n
=Y a5 3 a¥j_ovp;_gvrr — 0
+ 0+ 20; (j_athj_sthj_ae(sj_2 - ix))hj_1hj—ovpw
— 0+ W5 (Yj—atj—50j_ae(sj—2 - in) ) j—30j_ovpr
= 20;(Yj—5¥j-a¥j—5 — Yj—5 + 2yj-a — Yj-3) ;195 2v1s
+ W5 (Vj—50-a¥j—5 — Yj—5 + 24 — Yj-3)1hj—stj —2vrw
=0-04+0-04+0-0+0—-Y; (yj_gwj_ge(sj_g . i,\))wj_gvTu
= =¥ (¢j-3yj—2 — 1)hj—2vpv
= 0+ Y9 _qvupr
=0 by (Br—2).

Note that both inductive steps are possible because vy € 2.
This completes our proof of statements 2-5. O

In the next two results, we are concerned with how the Garnir element 1115 . . . Pp41
acts on elements of 2.

Lemma 5.6. Suppose j is odd with 3 < j <n—2, and T € Dom(X). Then

1. Foralloddn —22>12j+4, y1va... ;% v = Yh19a ... Yj0r.
2. 1o W povr = Yjpai3P1tba . i avr.

3. Priba . ;W = —2p1ibs .. by

4. V1ba . W ovr = Wi P1iba . bjur + i 11 b gvr.
5. Forall odd3 <i<j—4,

Y192 .. Yo = Wi 11ta - o + Yipethit1iraiga - i1e L Yot
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Proof. 1 and 2 follow immediately from definitions and the commuting relations be-
tween 1) generators. 3 follows immediately from Lemma 5.5. So only statements 4 and 5
require any real work!

4. rihy . W _gvp = Yt g i3 (Vi_athj 1t _oe(s; - 5j_2 - ix))
o

Y193 _oUr

= V" 3(Yj1¥j-2¥j-1 + Yj—2 — 2yj-1 +¥5)
Y13 _ovr

= ;10 g2 (V1050 _1e(sj_2 - ix) ) _3bj_ovr
+ b1 s (yj—2bj—se(sj—2 - ix))j_ovr
= 200" ;5 (yj—1vj—1e(sj—2 - ix))j—3¥j_ovr
+ ¢ i3 (yve(sj—2 - ix))¥j_10j 3 _ovr

= 19 ;32 (Y015 st —2vr
+ 19" 3(j—syj—3 + D) —2vr
= 209" Y3 (Yj_1y; — 1)hj—shj—ovr
+ ¥ i —3(Yy 1) —1¥-3j 20T

= ;10" (V3o _ze(sj—1 - 85 - Sj_2 - ix))hj_190—2vT
+ 0+ Y519 -3 _ovr
— 0+ 209" (2 _ge(sj—2 - ix))1hj—2v7 + 0

= Vi 190" (Yj 293 —2) Y1995 —2vr
+ ;10" 3 v +0

= ;10020 ;3 (Vj_othj_11j_ze(s; - ix))hjur
+ b1 ;39 ovr

= V1920 i3 (Vi1 —2vj-1)Yjvr
+ ;10 g1 _gur

=V ¥ 3o 1jur + b1 Y 51 svr.

5. Let ¢ be odd and 4 <7 < j — 4. Then

b . Yo = P1tha o Vi 11 Vi Wi 3 Yiga - Y5 UT
P P*
= Yuthio1 (Vithip1bie(Siqa - Si* Siqa - Sive 55+ ix))
“igaVir1Vi 103 vr
= i1 (Vi1 ¥iVic1 + Yi — 2it1 + Yig2)
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VigaVip1¥i1iYipsd or

= i 1ahi 10 (Yip1Pivatbizre(si - Siva- Sive - 55 0x))
Yic1¥itbipsTor
+ Yip2Pip1ubio1 (Yithi—1€(si - Siva - Sive 55 1x))
Pitigs o
— 20i0thuthi1 (Vi 1Wirr1e(si - Sita - Sive - 5; - ix))
“Yic1¥itbips T
+ i1 (Yigoivae(si - Siva - Site -85 ix))
Yip1i1iivsur

= Yir1Vui1¥i (Vi i1 Vivo) i1 ¥ithipsy vy
+ Yipetip1¥ethio1 (Yi1yio1 + Dbitbigsdor
= 2i2hu i1 (Vi 1¥ive — DYbic1¥itbips™vr
+ o1 (ViraYits)Vig1¥i—1¥iYigsd or

= Pip1Vipoths (Vim1Pithi—1e(Sig1 - Siga - Si- Sipa- - S5 ix))
it 1Vipoiivst vr + 0 + Yigoip1 Vi1 ¥itbips or
— 0+ 201 0tu (V7_1€(8i - Siva - Sive -85 - ix))Pitbiysy vr
+ igoti1¥u (Vi1 €(si - Sita - Sive -85 - i\))Vilirsiysy vr

= Yir1¥ir2u (Vithim1¥i) it Yigo¥ithivs or
+ Yiraip1¥ivap " Yurhi—1hior + 0+ 0

= Yi1¥iroithethior (Vithip1ie(Siva - Siva- - 55 03))
VitaPirsh vr + YigoPin1¥irs i1 givr

= Yir1Vir2ihutio1 (Vi1 ¥iti ) Yirathivst vr
+ Vip2¥ip1¥ig s Puthi1Yivr

= V1Y 1¥iip1ivoipsh v
+ Yirotit1irsy Yuioihior. O

Proposition 5.7. Let T € Dom(\). Then Y113 ... ¢Ypr1vr = 0.
Proof. Repeated application of the above lemma yields 1 .. . 1107 as a sum of

expressions ending in ¢y ...4; 2z for various odd values of j > 3. In all cases the
relations of the Specht module give us our result. O
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6. Decomposability when n is odd

We can now begin calculating 7-endomorphisms of S). We now know that f €
End#(Sy) if and only if

flz)= Z arvr for some ar € F
TeDom(\)

with ¢;f(2) =0forallodd j #b+ 1 with3 < j<n—2.

Definition 6.1. Let ¢, j be odd integers with 3 < ¢ < b+1 < j < n. We will denote by T; ;
the tableau with dominoes {[2, 3], [4,5],...,[b, b +1],[7 — 1, 7]} \ {[¢ — 1,4]} in the leg.

415167 2[3[8]9]

Example. If \ = (5,1%) then T5 ¢ =

[o]oo]ee]ro]=

1
4
and T3,7 = ?
6]
7]

Remark. We observe that the normal form for vy, ; is ¥ 1 ¥ | z.

Proposition 6.2. Suppose a is odd and b is even. Then there exists an € -endomorphism f
of S\ given by

i—1 n+2—j
f(Z) = E 9 : 9 Ty ;-
3<i<h+1
b+3<j<n
4,7 odd

Proof. All we need to show is that ¢, f(z) =0 for allodd k # b+ 1 with 3 <k <n—2.
We will rely extensively on our previous results regarding the actions of i generators on
tableaux.

First, notice that ¢3vr, ; = 0 for all i > 7. So

wa =13 (Z 2. = + Ts.; T wv%,j)

n + 2 —
= Z 2¢3 vty — 293 - vy ;)
=0.

Next, suppose 5 < k < b — 1. We notice that ¢vr, ; =0 for all i < k — 4 and for all
i >k+4. So
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EE O pLETRES S

2 g Te2a Ty g Tk
k—3 n+2—3j
Tty T g Vheay
n+2—jk+1 k-1 k-3
— ZJ: 2 ( 2 — 2 . 2 + 2 >¢vak+2,]’
—0.

Now, for b+ 3 < k < n — 4, we notice that ¢yvr, ; = 0 for all j <k — 2 and for all
j=k+6.So

i—1 n4+2—-k i—1 n—k
¢kf(z) :1/% (Z T VT, + o UT; k42

-9 2 D 2
1
i1 n—k—2
t 5 T Uik
i—1/n+2—k n—k n—k—2
_zi: 2( A >w’“”Tivk
—0.

Finally, we notice that v, svr, ; = 0 unless j =n — 2 or n. So

i —1 i —1
¢n—2f(z) = wn—Q (Z 2 : 2 : qu‘,,n,—Q + 2 th,n)

1—1

= Z('L - 1)wn*QUTi,n—2 -2

wn72vTi7n_2
=0. |
Remark. This endomorphism allows us to tackle our decomposability question. In par-

ticular, Sy can be decomposed into a direct sum of the generalised eigenspaces of f. That
is B, ={v e Sy |(f —aI)™v = 0 for some n € N} for each eigenvalue z of f, and

Sy = @ E,.

x an eigenvalue of f

From the definition of E, it is clear that it is a non-zero #Z-module whenever z is an
eigenvalue of f. The existence of two distinct eigenvalues of f would ensure that we have
at least two non-trivial summands in the decomposition above, and we would be done.

The following lemma will be used repeatedly in further proofs.
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Lemma 6.3. Suppose x1 > y1 = 3 and x2 > ys = 3 are all odd numbers. Suppose also
that X € e(ix)Sx. Then we have the following cancellation relations:

1. If x1 > x5 > y1 we have

2—4 x
vl X =0 | VX
Y1 Y2 Y1 Y2

2. If xo > y1 = y2 we have

1 o Ty o
VIO X=V]¥ | X

Y1 Y2 y2  y1+4
Proof.
—4 T2
1. mmx 4 ¢ Wy Wy N Twlx
Y1 Y2 T2+2 Y1 Y2
xro— 4 o —2
= ¢ Wy Wy oWy W | W Ix
xo+2 Y1 Y2
2—4 x2—2
—v %24‘/ e x
T2+2 Y1 Y2
$2—4 ]
=0 | U|X.
Y1 Y2

2. The proof proceeds similarly to the previous case. 0O

Now, we work towards computing the eigenvalues of f. It is clear that f acts on
e(in)Sx; f(vr) € e(in)Sx whenever T € Dom(A) by the nature of our actions of ¢
generators on elements of 2. We will show that the action of f on e(iy)S) is triangular.
Take T' € Dom(\), and write vy in normal form:

Ji J2 Ja
vp=¥ | ¥ | ..¥] z
b+3—2d b+5—2d b+1

Then we want to look at

fony=v 1w T el

b+3—2d b+5-2d b+1

p— 1 2—9 J J2 Ja b—1 j—2
= Y ! it A N A
scichtt 2 2 b+3—2d b+5-2d b1 i b+l

b+3<ji<n
1,7 odd

We begin by looking at the simplified case where d = 1.
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Lemma 6.4. Let 3<i<b+1<j<nandjg=>b+1. Then

Jd
=20 | z ifi=b+1andj=>b+3,
b+1
Ja
N ifi=b+1andj=0b+5,
b+1
0 ifi=b+1andj=>b+7T,
Ja b—1 j—2 Ja
U UtV 2=V ]z ifi=b—1andj=0b+3,
b+1 i b+l b+1
Ja _J—
WTWiWiz ifi<b—1andjg <j—4,
b—1 b+l
0 ifi<b—1andjg>7j—2and j =0+ 3,
b—3 j—6 ja
WTW¢W¢Z ifi<b—1landjg>j—2andj>b+5.
b—1 b+l

Proof. First suppose i = b+ 1. If j = b+ 3 we have
Jd Jd
U | Yyp12=-20 | 2.
b+1 b+1
If j = b+ 5 we have
v i Yy 3¥hy12 =V i z.
b+1
If 5 > b+ 7 we have
Ja Jj—2 Jd j—2
U] W z=0] VU] z
b+l b+l b+1  b+5
=0.

Ifi=b—1and j =b+ 3 we have
Jd Ja
Ul Y Wz=V ] 2
b+1 b+1

Next, suppose i < b— 1. If j; < j — 4 we already have an expression in reduced form
and the commuting relations alone put it into our normal form to give the stated result.
So let j4 > 7 — 2. Suppose ¢ < b—1 and j = b+ 3. Then we have

v i W T V12 =V i W T U1V 1¥p 12

b+1 7 b+3 7
Ja b—3
=v | U1tz
b+1 %

=0.
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Finally, let 7 > b+ 5. Then we have

tp¢ w¢w¢z7wrw¢w¢z
b+1 i b+1 b—1 b+1

b—3 Jj—6 ja
—EPTW¢LP¢Z
b—1 b+1

which is reduced and in our normal form. 0O

J1 J2 Ja
Proposition 6.5. Supposevr =¥ | ¥ | ...W | z€ P isin reduced normal form,
b+3—2d b+5-2d b+1
i and j are odd with 3 <i1<b+1<j<n and let

J1 J2 Jd b—1 j—2
x)=w | ¥ | "N N
b4+3-2d b+5-2d b+1 i b4l
Then (%) is a scalar multiple of either vp or some longer W-expression. In particular,
() is a scalar multiple of v in precisely the following cases:

(*) = vr if

¢ 14+j=2b+6,i>2b+3—-2d, j, =2j—4—4(d—v) for all v;

e 1+7=204+2,i>2b+1—-2d and j, = j — 2 —4(d —v) for all v.
(%) = =2vp if

e i+j=2b4+4,i>b+3—2d and j, = j—2 —4(d —v) for all v.

Proof. We will use the previous lemma and work down the cases in the order they appear
above. We will always look to put expressions into reduced normal form.

1. Let d > 0. When ¢ = b+ 1, we can clearly see that we get («) = —2vp when j = b+3,
() = vy when j = b+5 and (%) = 0 otherwise. It is also clear that when ¢ = b—1 and
j =b+ 3 we have (%) = vy, so in all further cases we will ignore this combination.
2. If i <b—1and jg < j — 4, we must split into two subcases.
(a) First suppose ¢ < b+ 1 — 2d. Then we have

J1 J2 b—1 j—2
b+3—2d b+5—2d b+1 [ b+1
J1 J2 -3
b+3—2d b+572d —1 b—1 b+1
b—1—2d Jd j—2
7 b+1—2d b+3—2d b—1 b+1

The above expression is reduced and longer than vp.
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(b) If i >b+3—2d,say i = ks —2=0—1—2d + 2s for some s > 2, we have

J1 Js—1 Js Js+1 ja  Jj—2
=w | v L w T w L L wlvl -
b+3-2d  b-1-2(d—s) b—1-2(d—s) bt1—2(d—s) b—1 btl
==

Claim. Suppose for some s —1 < u < d—1 we have j, 2 b+ 3 —2(d+ s — 2v)
for all s —1 < v < u. Then the above expression is equal to

Js Ju Ju+1 Ju+2 Ja _J—2
vw [ v | w ] v U L wlwl .
b+1—2(d—s) b+1+42(d—u) b+7—2(d+s—2u) b+3—2(d—u) b—1 b+1

If for the mazimal such u we have u < d— 2, the expression above is reduced and
longer than vrp.

Assuming the claim to be true, we need to look at what happens if the condition
in the claim holds for v = d — 1. In this instance, by the claim we have

. Js Jd—1 Jd j—2
=ww | Lwlw ] vl
bt1-2(d—s) b—1 bt342(d—s) b+l

—2ur ifj=b+54+2(d—s)and jg =2b+3+2(d—s),
vr if j=b+7+2(d—s)and jg > b+ 3 +2(d— s),
0 ifj>2b+9+2(d—s)and jg=b+3+2(d—s),
Vg otherwise, where vg is some expression longer than vp.

Note that the first case above never actually occurs here, by the condition that
Ja < j—4. We can see that we get (x) = vp precisely when j, > b+3—2(d+s—2v)
foralls—1<v<d—1land jg=b+3+2(d—s)=j—4

Finally, we prove the claim, by induction on u. When u = s — 1, we have that
Js—1 = b—1—2(d—s) (which we already knew a priori) and j, = b+1—2(d—s).
Then

b+1—2(d—s) Js+1 ja -2 Js+1 Ja -2
e | W | LWl W =0 | W W] 2
b—1-2(d—s) b+1—2(d—s) b—1 b+l b+1—2(d—s) b—1 b+l

and the claim holds.
Suppose the claim is true for some s —1 < u < d—2, and that j, > b+3—2(d+
s —2v) for all s — 1 < v < w+ 1. Then by induction, we have

b+1-2(d—s) Jot1 Ja =2
e LW L L wlw s
b—1-2(d—s) b+1—2(d—s) b—1 b+l

Js Ju Jut1 Ju+2 Ja J—2

—vtw | w | w 1 v L Lwlw s

b+1—2(d—s) b+142(d—u) b+7—2(d+s—2u) b+3—2(d—u) b—1 b+1

=yt
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Jut1 Jut2 b+5—2(d+s—2u) Ju+3
=ty I 4 1 4 l 4 ..
b+7—-2(d+s—2u) b+11-2(d+s—2u) b+3—2(d—u) b+5—2(d—u)
Ja -2
W | W] z since ju41 = b+ T7—2(d+ s — 2u) by hypothesis
b—1 b+1
Jut1 Ju+2 Ju+3 ja  j—2
=yoty | @ 1 vl LwlU oz
b+3—-2(d—u) b+11-2(d+s—2u) b+5—2(d—u) b—1 b+1

and the claim is proved.
3. Next, we look at the final case, i < b—1, j4 > j — 2 and j > b+ 5. We have that

J J j
=w | w | . wfqmwuiwz
b+3—2d b+5—2d b—1 b—1 b+1

Once again, we split into subcases.
(a) First suppose i < b+ 1 — 2d. Then

b—1-2d J1 Jd—1 j—6  ja
()=w 1 ¥ | w TodT Y e

i b+1-2d b+3—2d b—3 b—1 b+l
Claim. Suppose for some 0 < u < d — 1 we have j < jg—p + 4(v + 1) for all
O0<v<uandj> b+3+2vf0rall0 < u. Then
b—1-2d J1 —u-1 j—6—4u  jJa— Ja
() = S T R S S S T AR R
i b+1-2d b+3—2d b—3—2u b—1—2u b+1—2u b+1

and this expression is of length 2(u+1) less than the length of (). Furthermore,
if we take the maximal such uw and have u < d—2 and j > b+ 5+ 2u, it is
reduced. If j = b+ 3 4 2u, the expression is equal to 0.

We prove the claim by induction on u. If © = 0, the result follows immediately
from Lemma 6.4. Now suppose the claim holds for some 0 < u < d — 2, and that
J<Jja—wt+4(w+1)forall0 <v<u+1,but j > jog_wo+4(u+3) (ifu < d—3).
Then by induction, we have

b—1-2d J1 d—u—2 Jd—u—-1 J—6—4u  Jd— Jd
x)=v t+ ¥ | v ¢ W v | v | v ¢ LUz
i btl—2d b43—-2d b—5—2u b—3-2u b—1—2u b+1—2u b+1
ER'%
Jd—u—1 j—10—4u j—8—4u  ji-u Ja
—WW I VYi6-au¥sa¥iea¥ | ¥ | ¥ | W]z
—4—4uy b—3—2u b—1—2u b+1—2u b+1
j—10—4u  ja— Ja

—ow | v w ¢ LUz,
b—3—2u b—1—2u b+1—2u b+1
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which is the claimed expression. In the induction step, 2 ¥ terms have been
deleted, which proves the length part of the claim. It is clear that if j < b+5+2u
then the expression in the claim is 0 and likewise that when v < d — 2 (and
j = b+ 54 2u), we have a reduced expression.

Now, let u be maximal under the conditions in the claim. First, suppose that

u < d — 2. By the claim, we can assume that j > b+ 5 4 2u. This implies that
j—2

¥ | has length at least u+ 2. Similarly, i < b+ 1—2d and u < d — 2 imply that
b+1
b—1

¥ 1 also has length at least u + 2. So by the claim, once (+) has been written

in a reduced form, it has length at least 2 more than vy.

But what if u = d — 1?7 The above claim tells us that

b—1—2d j—2—4d

(5)=0 1+ & | ovp

% b+1-2d

This is zero unless j > b+ 3 + 2d, in which case we have a (reduced) longer
expression than v, or i > b+ 1 — 2d. Note that in the latter case, we in fact
have ¢ = b+ 1 — 2d because of the conditions on the subcase we are looking at.
Looking at this case, we assume j < b+ 3 4 2d, since j > b+ 3 + 2d yields an
expression longer than vy. Under these conditions, we have (%) = vp.

Finally, suppose that i > b+ 3 —2d. Say i = ks —2=0b—1— 2(d — s) for some
s > 2. Then

J1 Js—1 Js Js+1 Ja  J—2
v w0 e e T v v
b+3—2d b—1-2(d—s)  b—1—2(d—s) b+1—2(d—s) b—1 b+l

Claim 1. Suppose we have —1 < u < d—s—1 with js4, 2b+3—2(d—s)+4v
for all =1 < v < u. Let

J1 js+u
vr=v | ..U 1 .
b+3—2d b+1-2(d—(s+u))
Then
Jstut1 Jstu+2 Jstu+3 Jd Jj—2
() = 0@ J - A v 4 R /2N /2 -
b+7-2(d—s—2u)  b+3-2(d—(s+u)) b+5-2(d—(s+u)) b—1 b+1

The above claim is proved by a simple but tedious induction, in the spirit of
previous claims in this proof. Now first suppose we have u = d — s — 1 satisfying
the conditions in the claim, but also j4 > b+ 3+ 2(d — s). Then

J1 - Ja Jj—2
b+3—2d b—1 bt3+2(d—s) b+1
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=2T" it j=b+5+2(d—s),
=497 ifj=b+34+2(d—s)orj=b+7+2(d—s),
0 otherwise.

Otherwise, take u maximal, satisfying the conditions of Claim 1. We have

Jstu+2 Jstuts ja -2
(+) = 0" W i v i LW
b+3—2(d—(s+u)) b+5—2(d—(s+u)) b—1 b+1

by the claim. Note that for these conditions on w to hold, we have jsi, =
b+3—2(d—s)+4uand joput1 =b+5—2(d —s) + 4u.

Claim 2. Let 0 < r < d—s—u—2 be such that jg_, > j—2—4v for all0 < v < r.
Then

Jstu+t2 Jd—r—1 j—6—4r  Jda—r Jd—r+1 Jd
() = 0P J A 2 /SR -
b+3—2(d—(s+u)) b—3—2r b—1-2r b+1-2r b+3—2r b+1

If r is maximal such that jg_, > j—2—4v for all0 < v <randr < d—s—u—3,
then this expression is reduced.

Again, this claim can be proved by induction as with the previous claims. Note
that the above term is zero unless j > b+ 5 + 2r.

Whenever r < d — s —u — 3, the reduced expression above is longer than vp. To
see why, note that we have the condition jsy,y1 = b+ 5 —2(d — s — 2u) from
Claim 1. Since j;+1 = j; + 2, this yields j4—r—1 = b+ 1+ 2(u—r). Now, we have
assumed that jg_,.—1 < j —6 — 4r, so we can combine these inequalities to yield
J=b+9+2(u+r).

We now have enough information to compare lengths. To leave this reduced form,
we first deleted 2u + 4 ¥ terms from (x) to arrive at the result from Claim 1.
Next, we deleted 2r + 2 ¥ terms to arrive at the result of Claim 2. So in total,
we have deleted 2(r +u+3) =: 0 ¥ terms from (x) to leave a reduced expression.
Now, how many ¥ terms did we append to vr in the definition of (x)? Call the

b—1
number of terms appended «. Since i =b—1—2(d — s), ¥ 1 is a product of
i

j—2
d—s+1W terms. Since j > b+9+2(u+r), ¥ | has length at least 4 + u +r.
b+1

So, « > d+u+1r — s+ 5. By the definition of r, we have that d — s > r +u + 2,
soa>=2(u+r+3)+1>46, and we are done.

Now suppose 7 = d — s — u — 2 satisfies the conditions of Claim 2, and we are
left with a reduced expression. The claim tells us that the reduced expression is

j+2—4(d—(s+u)) Jstut2 Jd
b+3—2(d—(s+u))  b4+5—2(d—(s+u)) b+1
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Now, using the fact that js4, = b+ 3 — 2(d — s) + 4u, we see that for this
expression to be reduced we have j > b+ 3 + 2(d — s). Now, arguing as above,

b—1
we have 0 = 2(r +u+3) = 2(d— s+ 1), the length of ¥ 1 is once again d—s+1

=)

and the length of ¥ | is at least d — s+ 1. Hence a > ¢, with equality precisely
b+1

when j = b+ 3+ 2(d — s), in which case we have (%) = vp.

Now suppose r = d — s — u — 2 satisfies the conditions of Claim 2, but we are

not left with a reduced expression. Then

J+2—4(d—(s+u)) Jstut2 Jd
b+3—2(d—(s+u)) b+5-2(d—(s+u)) b+1

EH

which is zero unless j > b+ 1+ 2(d — (s + u)), and we have the following:

Claim 3. Let —1 < x < s+u—1 be such that jsry—n =2 j+2—4(d+v—(s+u))
forall =1 <v < z. Then

i Jotu-z—1 j—2—4(d+a—(s+u)) Jotu—s
(x)=¥ | ...¥ 1 4 l v
b+3—2d b—1-2(d+az—(s+u)) b+l-2(dtaz—(s+u)) b+3—2(d+z—(s+u))
js+u

b+3—2(d—(s+u))
Note that if v < s+u—2, this term is zero unless j 2 b+3+2(d+z — (s +u)).

Take x to be the maximal such that the conditions in Claim 3 are met. First,
suppose z < s +u —2. Then joyyp > j+2—-4(d+2—(s+u)) and joyy—r1 <
j—2—4(d+z— (s+wu)). When z < u — 1, we have our assumption in using
Claim 1 that jsyy—z—1 = b—1—2(d—s)+4(u—2). Comparing these inequalities
yields j > b+ 3 +2(d — s).

Similarly if > u, jsyu—w—1 =2 b—1—2(d+2x— (s+u)) can be read off from the
expression in Claim 3. But this yields j > b+342((d—s)+(x—u)) > b+3+2(d—s).
Now in either case,

b+3—2(d—s)+4u = jsr, by the comment after Claim 1,
>j+2— 4(d —(s+ u)) by the conditions in Claim 3,
>b+5—2(d—s) + du.

We have a contradiction, and o if jsio = j+2—4(d—(s+u)) but j; < j+6—4d,
we must have () = 0.

Now suppose z = s+ u — 1. Then we have j > b — 1+ 2d, or else (x) = 0 and
we’re done. So
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b+ 3 —2d+ 2s+ 4u = js4o by the comment after Claim 1,
>j+2—4(d—(s+u)) Dby the conditions in Claim 3,
>b+1—-2d+4(s+u).

This implies s = 1, and so ¢ = b+ 1 — 2d. But this breaks the initial conditions
of the subcase we are in, so we again have a contradiction. So in fact we never
get terms that look like the expression in Claim 3; ¥* remains intact in the final
reduced expression for (x), if it is non-zero.

If we collect the cases where () is equal to a scalar multiple of vy, we get the following
list:

(%) = vp if

e i=b+1,7=0b+5,d>0 - from case 1;

e b+3-2d<i<b—1,j=2b+6—1i,jq=2b+2—1i,and j, > j—4—4(d—v) for
all v — from case 2(b);

e b+3—-2d<i<b—-1,j=2b+6—4and j, > j—4—4(d —v) for all v — from
case 3(b);

e i=b—-1,7=0b+3,d>0 - from case 1;

e i=b+1-2d,j=b+1+2d>b+5and j, >j—2—4(d—v) for all v — from
case 3(a);

e b+3-2d<i,j=2b+2—i>b+5 ja>j—2and j, >j—2—4(d—v) for
all v — from case 3(b);

e b+3-2d<i,j=204+2—i2b+5,jqg>j—2and j, > j—4(d—w) for all v -
from case 3(b).

These conditions can be written compactly as the first and second conditions in the
statement of the proposition.

(*):—2UT if
e i=b+4+1,7=0b+3,d>0—-from case 1;
e b+3-2d<i<b—-1,j=2b+4—i=2b+5,and j, 2 j—2—4(d—w) for all v -
from case 3(b).

These two conditions can be written compactly as the final condition in the statement
of the proposition. 0O

The above result immediately leads to the following crucial fact.

Corollary 6.6. Order 9 so that vy comes after vy whenever r(U) > r(T). With respect
to this ordering, the action of f on e(ix)Sy is lower triangular. In particular, for each
T € Dom()\), the coefficient of vr in f(vr) is an eigenvalue of f.
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Proposition 6.7. f has the eigenvalues
d
—§(n—2d—|— 1) ford=0,1,...,b/2.

Proof. Fix some d € {0,1,...,b/2}. Let

n—2d n—4 n—2
=¥ | W W|
b+3—2d b—1 b+1

Using the three bullet points in Proposition 6.5, we will compute the eigenvalue —%(n -
2d + 1) as the coefficient of vy in f(vr). First, note that by choice of T the inequality
on jq for each bullet point is the strongest. So to check when the family of inequalities
at the end of each bullet point holds, it suffices to only verify the inequality on jq.

Ifi+j=2b+6andi> b+ 3— 2d, then we claim that the inequalities in the first
bullet point are always satisfied by vp. For this, we need jg > 2b + 2 — i. Using that
d < b/2 and n > 2b we also get that 2b+2 —i < b—1+2d < 20—1 < n—2. So the
inequalities always hold in the case of the first bullet point.

Now, ifi+j=2b+2and ¢ > b+ 1 — 2d, we claim that the inequalities in the second
bullet point are always satisfied by vr. To see this, we must show that j; > 2b —i. We
have 2b —i < b—14+2d < 2b—1 < n—2 and so the inequalities always hold in the case
of the second bullet point.

Finally, i + 7 = 2b4+ 4 and @ > b+ 3 — 2d, then we claim that the inequalities in
the third bullet point are always satisfied by vy. We need jg; > 2b+ 2 — ¢ but have
20+2—-1<b—-1+2d<2b—1<n—2and we are done.

So now we only need to verify which pairs (7, j) satisfy the first two conditions in each
bullet point. For the first bullet point, we have the pairs (b + 3 — 2d,b + 3 + 2d), (b +
5—2d,b+142d),...,(b+1,b+5). For the second, we have the pairs (b+ 1 — 2d,b+
1+2d),b+3—-2d,b—1—-2d),...,(b—1,b+ 3). For the third, we have the pairs
(b+3-2d,b+1+4+2d),(b+5—-2d,b—1+2d),...,(b+1,b+3).

Recall that the coefficient of !I/bTIJIZf in f(z) is % . %2_3 Hence the coefficient

i 1
of v in f(vr) is '

U
—

b-—2r)a—3—=2r)+(b—-2-2r)a—1—-2r)—2(b—2r)(a—1—2r)

|
-

I

o

1d—l
= ZZsr—2(n—1)
r=0

d—1

= f%d(nfl)+22r

r=0

d
——Sn-2d+1). O
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Remark. The sequence of eigenvalues given above is

(n—1)

0. —
’ 2

3 b
—(n—3), —2(n—5), ..., ——(a+1).
, —(n—3), 2(n 5), , 4(a—|— )
If we write a = 2r + 1 and b = 2s then this sequence can be rewritten as
0, —(r+s), —2(r+s—-1), =3(r+s—2), ..., =s(r+1).

Theorem 6.8. Suppose charF # 2. Then S(4,1vy is decomposable if either b > 4 or b= 2
with char Ft 21

Proof. By the remark after Proposition 6.2, it suffices to show that f has at least two
(n 1)

distinct eigenvalues. When s > 2, 0, — and —(n — 3) are three eigenvalues of f; if
S(a,1vy Were indecomposable, these Would be equal. Since p # 2, this is impossible, and

we have the desired result.

When b = 2 and char Ft 21 we have the distinct eigenvalues 0 and —@ and we
are done. O
It remains to resolve the case a = 2r + 1, b = 2 when char F | “5=. We have
3+2(r c)
f(2) =TUT st (r—1) VT pps T VT, = ZC v z.

3

When b = 2 and charF| "51, we will prove that S is indecomposable by showing
that End s (S») has no non-trivial idempotents.

Lemma 6.9. Suppose a is odd. Then {I, f} is a basis of Endy(S(,,12)), where I is the
identity map on S, 12)-

Proof. Suppose we have g € S(4,12) \ (I, f)r. Since the coefficient of vz, in fis 1, we
can add multiples of I and f to assume without loss of generality that

(n—3)/2 (n—3)/2 2j—1
Z QU 5 = Z o; ¥ g Z.
j=2

We will show that applying the relations ¥, _org(z) = 0 for k = 1,2,...,(n — 5)/2
yields a(,_2x—1)/2 = 0. It then follows that g is the zero map, a contradiction.
Suppose, by induction on k, we have

(n—2k—1)/2

2j—1
g(z) = Z o, ¥ ]% z.

Jj=2
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n—2k—2
Then, acting on g(z) by ¥n_ok yields apm_op—1)2¢¥n-2¥ | 2z = 0 and we are
3

done. O

In order to find idempotents, we would like to know how to compose elements of our
basis. This amounts to the following lemma.

Lemma 6.10. Let a = 2r + 1 and b = 2. Then f?(2) = —(r + 1) f(2).

3+2(r—c)
Proof. Notice that ¥3-¥ | z=0forallc<r—2.So

w

P =3 e | k)
c=1
r 34+2(r—c)
:Zc Ul (r— 1WsWsz + 1Ws2)
3
c=1
r 3+2(r—c)
220 v L (=(r+1)2)
c=1 ks
=—(r+1)f(z). O
Lemma 6.11. Suppose a = 2r + 1 and charF| "T_l Then the only idempotents in

End sz (S(a,12)) are 0 and I, and hence S(,,12) is indecomposable.
Proof. Let o, 3 € F. Using Lemma 6.10, we have f?(z) = 0 and therefore
(ol + Bf)? = a*I 4 2a3f.

So al + Bf is an idempotent if and only o? = o and 203 = .
Whether o = 0 or @« = 1, we must have § = 0. The result follows. 0O

With the aid of Murphy’s result in [8], we have now completely determined decompos-
ability of the Specht modules S, 1»). We summarise our result in the following theorem.

Theorem 6.12. Suppose charF # 2. Then S, 1v) is indecomposable if and only if n is
even, or b =2 or 3 and charF | [§].
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