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Let Sλ denote the Specht module defined by Dipper and 
James for the Iwahori–Hecke algebra Hn of the symmetric 
group Sn. When e = 2 we determine the decomposability of 
all Specht modules corresponding to hook partitions (a, 1b). 
We do so by utilising the Brundan–Kleshchev isomorphism 
between H and a Khovanov–Lauda–Rouquier algebra and 
working with the relevant KLR algebra, using the set-up of 
Kleshchev–Mathas–Ram. When n is even, we easily arrive at 
the conclusion that Sλ is indecomposable. When n is odd, we 
find an endomorphism of Sλ and use it to obtain a generalised 
eigenspace decomposition of Sλ.
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1. Introduction

Let Sn denote the symmetric group on n letters. The representation theory of Sn

largely centres around studying a certain family of FSn-modules Sλ, called Specht mod-
ules, which are indexed by partitions λ of n. When the characteristic of F is zero, this fam-
ily gives a complete set of pairwise non-isomorphic FSn-modules. The modern standpoint 
on the theory of Specht modules has been developed by James and can be found in [9].
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The Iwahori–Hecke algebra HF,q(Sn) of Sn is a deformation of the group alge-
bra FSn. One motivation for its study is its representation theory – it provides a bridge 
between the representation theory of the symmetric and general linear groups. Here we 
consider it interesting in its own right.

In the series of papers [5–7], Dipper and James laid the foundations for and built up 
the theory of the Iwahori–Hecke algebra from the ground to a point where much was 
understood about its representation theory, at least when the quantum characteristic 
(denoted by e) is not 2. HF,q has a theory of Specht modules analogous to that for FSn, 
which describes the classical situation as a special case. Combinatorics of partitions and 
tableaux play an important role here, as in the classical case. Interestingly, results that 
hold for FSn in characteristic p can often be restated for HF,q at quantum characteris-
tic p. An example of this is the fact that Specht modules for FSn are indecomposable 
when charF �= 2 and Specht modules for HF,q are indecomposable when e �= 2 (that is, 
q �= −1).

When e = 2, we would like to fill in some gaps; in particular we would like to know 
which Specht modules are decomposable.

In [2], Brundan and Kleshchev showed that, remarkably, HF,q is isomorphic to 
a certain Khovanov–Lauda–Rouquier algebra. Immediately, this leads to a non-trivial 
Z-grading on HF,q and therefore FSn. Working from the KLR perspective, a whole the-
ory of graded Specht modules and graded homomorphisms can be built up. One recent 
development has been made in [10], where (in an even more general setting) the au-
thors give a presentation of graded Specht modules by generators and relations. They 
construct a homogeneous basis for Sλ indexed by the standard λ-tableaux.

In this paper, we will use the KLR machinery to work with HF,q. We will determine the 
decomposability of Specht modules for hook partitions at e = 2, building on Murphy’s 
work on the special case q = 1 in [8].

In Section 2, we will outline the necessary preliminaries and state some established 
results which we will call upon.

In Section 3, we look at Specht modules for hook partitions. We begin some prelimi-
nary work towards constructing endomorphisms of these Specht modules.

In Section 4, we use the results of Section 3 to recover a result regarding the endomor-
phism algebras of Specht modules for hook partitions when n is even, and thus determine 
their indecomposability.

In the crucial Section 5, we examine the actions of the KLR generators on a special 
subset of the homogeneous basis for Specht modules when n is odd.

Finally, in Section 6, we construct an endomorphism f of Specht modules Sλ, for n
odd. We calculate some eigenvalues of f and thus determine when Sλ can be decomposed 
into a direct sum of non-trivial generalised eigenspaces. In the case λ = (a, 12), it turns 
out some extra work is needed to arrive at our final result. This is achieved reasonably 
easily in light of the work done to establish KLR generator actions on the homogeneous 
basis.
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2. KLR algebras and their Specht modules

2.1. The Iwahori–Hecke algebra

Definition 2.1. We define the Iwahori–Hecke algebra H = HF,q(Sn) of the symmetric 
group Sn to be the unital associative F-algebra with presentation〈

T1, . . . , Tn−1

∣∣∣∣∣
(Ti − q)(Ti + 1) = 0 for i = 1, 2, . . . , n− 1
TiTj = TjTi for 1 � i < j − 1 � n− 2

TiTi+1Ti = Ti+1TiTi+1 for i = 1, 2, . . . , n− 2

〉

Definition 2.2. Define e ∈ {2, 3, 4, . . .} to be the smallest integer such that 1 + q + q2 +
· · · + qe−1 = 0. If no such integer exists, we define e = 0. We call e the quantum 
characteristic of H .

When e = 2 (that is q = −1), H is isomorphic by [2] to a Khovanov–Lauda–Rouquier 
(KLR) algebra with the following presentation:

Generators

y1, . . . , yn, ψ1, . . . , ψn−1, e(i) for all i ∈ {0, 1}n

Relations

y1 = 0

e(i) = 0 if i1 = 1

e(i)e(j) = δije(i)∑
i

e(i) = 1

yre(i) = e(i)yr
ψre(i) = e(sr · i)ψr where sr · i means i1 . . . ir−1ir+1irir+2 . . . in

ysyr = yrys

ysψr = ψrys if s �= r, r + 1

yrψre(i) = ψryr+1e(i) if ir �= ir+1

yrψre(i) = (ψryr+1 − 1)e(i) if ir = ir+1

yr+1ψre(i) = ψryre(i) if ir �= ir+1

yr+1ψre(i) = (ψryr + 1)e(i) if ir = ir+1

ψsψr = ψrψs if s �= r ± 1

ψ2
re(i) = 0 if ir = ir+1
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ψ2
re(i) = −(yr − yr+1)2e(i) if ir �= ir+1

ψrψr+1ψre(i) = ψr+1ψrψr+1e(i) if ir = ir+1 or ir+1 = ir+2

ψrψr+1ψre(i) = (ψr+1ψrψr+1 + yr − 2yr+1 + yr+2)e(i) if ir �= ir+1 �= ir+2.

2.2. Specht modules

The Specht modules are an important family of H -modules which are indexed by 
partitions of n. They are central in the representation theory of H , and have their 
counterparts in the KLR world. Thanks to the Brundan–Kleshchev isomorphism, we 
will be treating H as a KLR algebra and as such would like to look at the Specht 
modules in this setting. We will use a presentation given in [10, Definition 7.11]. Note 
that in [10], the authors call this the column Specht module.

Definition 2.3. Let λ = (λ1, λ2, . . .) be a partition of n. Then we define the Young diagram
of λ to be

[λ] =
{
(i, j)

∣∣ j � λi

}
⊂ N2.

We define a node of λ to be an element of [λ]. Finally, we define a λ-tableau to be the 
diagram [λ] with nodes replaced by the numbers 1, 2, . . . , n with no multiplicities.

Notation. We write λ � n to mean λ is a partition of n. We denote by λ′ the partition 
conjugate to λ. That is, the partition obtained by interchanging rows and columns of 
the Young diagram of λ. A tableau is said to be standard if entries increase along the 
rows and down the columns. We denote the set of standard λ-tableaux by Std(λ). If T
is a λ-tableau, we write j ↓T j +1 to mean that j and j +1 are in the same column of T
and that j + 1 is in a lower row than j in T .

Definition 2.4. Let λ � n and T ∈ Std(λ). Assign each node (i, j) of λ a residue j − i

(mod e). Denote by ik = ik(T ) the residue of the node in T occupied by k. Then we 
define the residue sequence of T as iT = (i1, i2, . . . , in).

Definition 2.5. Denote by Tλ the standard λ-tableau with entries written consecutively 
down the columns. We call Tλ the initial tableau. Denote the residue sequence of Tλ

by iλ.

Example. Let λ = (3, 2, 1) and e = 2. Then Tλ =
1 4 6
2 5
3

and iλ = (010100).

We now introduce the Specht modules. Since we will only be interested in those Specht 
modules indexed by hook partitions, we can give a fairly simple looking presentation. 
For general partitions, the Garnir relations are much more complicated.
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Definition 2.6. Given λ � n, the Specht module Sλ is the module generated by zλ subject 
to the following relations:

1. ykzλ = 0 for all k;
2. e(i)zλ = δi,iλzλ for all i ∈ {0, 1}n;
3. ψjzλ = 0 for all j = 1, . . . , n − 1 such that j ↓Tλ

j + 1;
4. The homogeneous Garnir relations defined in [10, Definition 7.11].

Unless there is possible confusion, we shall write z = zλ for the sake of tidiness.

Remark. Suppose we are looking at a hook partition λ = (a, 1b). Then relation 3 can be 
rewritten ψjz = 0 for all j < b + 1. In this case, the Garnir relations in 4 are ψjz = 0
for all j > b + 1 and ψ1ψ2ψ3 . . . ψb+1z = 0. So we have

S(a,1b) =
〈
z
∣∣ e(i)z = δi,iλ , ykz = 0 ∀k, ψjz = 0 ∀j �= b + 1, ψ1ψ2 . . . ψb+1z = 0

〉
.

Definition 2.7. Let λ � n and T ∈ Std(λ). Define wT ∈ Sn to be the permutation such 
that wTTλ = T . Let si be the basic transposition (i, i + 1). Fix a preferred reduced 
expression w = sr1 . . . srm for each element w ∈ Sn, where m is minimal and 1 �
r1, . . . , rm � n − 1. Define ψw = ψsr1

. . . ψsrm
. Finally, define vT = ψwT

z.

Theorem 2.8. (See [10, Corollary 7.20].) Let λ � n. Then B = {vT
∣∣ T ∈ Std(λ)} is 

a basis of Sλ.

Remark. Note that the elements vT depend on choices of preferred expressions of elements 
of Sn. However, when λ is a hook partition, these expressions are unique up to applying 
commutation relations, and hence vT is well-defined.

We now look at some basic results for Specht modules which will be useful for our 
purposes.

Theorem 2.9. Sλ is decomposable if and only if Sλ′ is.

Proof. The result follows from [6, Theorem 3.5]. �
Theorem 2.10. If e �= 2, or if λ is 2 regular, then Sλ is indecomposable.

Proof. The result follows from [7, Corollary 8.7] using a similar argument to that used 
by James in [9] to prove the analogous result for the symmetric group from [9, Theo-
rem 13.13]. �

In view of this last result, we seek to classify decomposability of Specht modules Sλ

when λ is 2-singular and e = 2. We will focus on the special case where λ = (a, 1b) for 
b � 2.
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3. Specht modules for hook partitions

Decomposability of Specht modules for hook partitions was solved by Murphy in the 
case of the symmetric group:

Theorem 3.1. (See [8, Theorem 4.5].) Suppose charF = 2. Then S(a,1b) is indecomposable 
if and only if n is even or a − 1 ≡ b (mod 2L) where 2L−1 � b < 2L.

Using this result, we will be able to assume charF �= 2 where necessary. The following 
result will also reduce our workload later on.

Theorem 3.2. Suppose a is odd and b is even. Then S(a,1b) is decomposable if and only 
if S(a+1,1b+1) is.

Proof. For any r � 0 and any i, functors

e
(r)
i : Hn+r-mod → Hn-mod

f
(r)
i : Hn-mod → Hn+r-mod

are introduced in [3, Section 2.2]. These functors are exact, and have the following 
property: if M is a non-zero module and we let εi(M) := max{r | e(r)

i M �= 0}, then:

[3, Lemma 2.12] If D is a simple module, then e(εi(D))
i D is simple.

Since e(r)
i is exact, we have εi(D) � εi(M) when D is a composition factor of M , 

and so by the above lemma we deduce that the composition length of e(εi(M))
i M is at 

most the composition length of M , with equality if and only if εi(D) = εi(M) for all 
composition factors D of M .

A corresponding result holds with fi, ϕi in place of ei, εi.
Now consider Specht modules. By [3, Lemma 2.4] and [3, Eqs. (7) and (8)], e(r)

i and f
(r)
i

can be interpreted as restriction and induction, respectively, followed by projection onto 
particular blocks. In view of the block classification for Hecke algebras of type A [11, 
Theorem 2.11] and the branching rules for induction and restriction of Specht modules 
([5, Theorem 7.4] and [1, Proposition 1.9] respectively), we deduce that εi(Sλ) is the 
number of removable nodes of λ of residue i, and e(εi(Sλ))

i Sλ is the Specht module labelled 
by the partition obtained by removing these nodes. A corresponding statement holds 
for fi and addable nodes.

In particular, when e = 2, a is odd and b is even, let λ = (a, 1b) and μ = (a +1, 1b+1). 
Then ε1(Sμ) = ϕ1(Sλ) = 2, and e(2)

1 Sμ = Sλ, f (2)
1 Sλ = Sμ.

In view of the above results, this means that Sλ and Sμ have the same composition 
length and that e(2)

1 D �= 0 for every composition factor D of Sμ. Hence (again by ex-
actness) e(2)

1 N �= 0 for every submodule N of Sμ. Hence if Sμ is decomposable, then so 
is Sλ. The same argument the other way round shows that if Sλ is decomposable, then 
so is Sμ. �
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For the remainder of the paper, we fix λ = (a, 1b) and n = a + b. Recall that

Sλ =
〈
z
∣∣ ykz = 0 ∀k, ψjz = 0 ∀j �= b + 1, ψ1ψ2 . . . ψb+1z = 0, e(i)z = δi,iλz

〉
.

Suppose f is an H -endomorphism of Sλ. z = e(iλ)z, so we have f(z) ∈ e(iλ)Sλ. 
Now consider the basis B. [4, Lemma 4.4] tells us that e(i)vT = δi,iT vT for any T ∈
Std(λ). Hence B ∩ e(i)Sλ = {vT | iT = i}. In particular, f(z) is a linear combination of 
elements in D := B ∩ e(iλ)Sλ = {vT | iT = iλ}. This is at the core of our approach to 
understanding EndH (Sλ).

Definition 3.3. When λ = (a, 1b), we define the arm to be the set of nodes {(1, 2), (1, 3),
. . . , (1, a)} of λ and the leg to be the set of nodes {(2, 1), (3, 1), . . . , (b + 1, 1)}.

Lemma 3.4. Suppose b is even and vT ∈ D . Then for all 1 � i � �n/2� −1, 2i +1 appears 
directly after 2i in T . That is, if 2i is in the leg of T then 2i + 1 is directly below it, and 
if 2i is in the arm of T then 2i + 1 is directly to the right of it.

Proof. In defining iλ, we assign all nodes of λ in which Tλ contains an even entry a 1
and all others a 0. First, we note that since b is even and vT ∈ D , the final node in the 
leg of λ has residue 0. This ensures that if 2i is in the leg of T there must be some entry 
immediately below it.

By induction on i > 1, assume that 2i + 1 appears directly after 2i in T , for all i < k. 
Suppose our assertion is false for i = k. We assume without loss of generality that 2k is 
in the leg of T and 2k + 1 is in the arm. Now by induction any even number, 2j < 2k, 
is immediately followed by 2j + 1. This forces 2k + 1 to be adjacent to 2j + 1 for some 
j < k, and vT /∈ D . �

The fact that entries must stick together in these pairs motivates our next definition.

Definition 3.5. We will call the pair of entries 2i, 2i + 1 for 1 � i � �n/2� − 1 a domino. 
We will denote the domino by [2i, 2i + 1] or Di. We define a domino tableau to be any 
λ-tableau T such that vT ∈ D . We denote the set of domino tableaux by Dom(λ).

Remark. D = {vT | T ∈ Dom(λ)} is a basis of e(iλ)Sλ.

Now, we separate our problem into cases where a and b are odd or even. When b is 
even, we have iλ = 0101 . . . 01. If b is odd, however, we have iλ = 0101 . . . 011010 . . . 10, 
where we have a repetition in the positions b + 1 and b + 2.

We will now begin by solving the simplest cases, where n is even.

4. Decomposability of S(a,1b) when n is even

First, we will look at the case where a and b are both even.
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Lemma 4.1. Suppose T ∈ Std(λ) and 1 < i < n. If i, i + 1, . . . , n all lie in the arm of T
then ψivT = 0. If i lies in the leg of T and i + 1 lies in the arm, then ψivT = vU , where 
U is obtained from T by swapping i and i + 1.

Proof. First, suppose i, i + 1, . . . , n all lie in the arm of T for some 1 < i < n. Then vT
cannot possibly involve ψj for any j > i − 2. It follows that ψi commutes with each 
generator ψj appearing in vT and the result follows from the Specht module relations.

To prove the second part of the lemma, we note that w−1
T (i) < w−1

T (i + 1). This is 
easily seen since w−1

T (j) is the number that occupies the same node in Tλ that j occupies 
in T . Hence if si1si2 . . . sir is a reduced expression for wT , then sisi1si2 . . . sir is a reduced 
expression for siwT . So ψivT = vU . �
Theorem 4.2. If a and b are both even, then EndH (Sλ) is one-dimensional. In particular, 
Sλ is indecomposable.

Proof. Suppose f ∈ EndH (Sλ). Then by the above remark,

f(z) =
∑

T∈Dom(λ)

αT vT for some αT ∈ F.

Then by Lemma 4.1, acting on the left by ψn−1 annihilates all vT for tableaux T which 
don’t have Dn−2

2
in their leg. Now, in the remaining tableaux, Lemma 4.1 gives us that 

ψn−1vT ∈ B \ D . Since ψn−1f(z) = 0, we must have αT = 0 for all T which have Dn−2
2

in the leg.
In this way, we act on f(z) by ψn+1−2i for i = 1, 2, . . . , (a − 2)/2 to annihilate all vT

for tableaux T which don’t have Dn−2i
2

in the leg. At each step, we deduce that αT = 0
if T has Dn−2i

2
in the leg.

Therefore f(z) = αz for some α ∈ F and the result follows. �
Next, we look at the case where a and b are both odd.

Theorem 4.3. If a and b are both odd, then EndH (Sλ) is one-dimensional. In particular, 
Sλ is indecomposable.

Proof. The result follows from Theorem 4.2 by application of Theorem 2.9. �
5. KLR actions on DDD when n is odd

When n is odd, much more work must be done. By Theorem 2.9, we can assume 
throughout this section that b < n/2.

Using Theorem 3.2, we can focus on the case where a is odd and b is even, as it is 
slightly easier to work with. The case where a is even and b is odd will then follow.

Recall that D = {vT | T ∈ Dom(λ)} is a basis of e(iλ)Sλ. At this point we introduce 
some new notation which is much needed to keep things tidy!
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Definition 5.1. We define Ψj := ψjψj+1ψj−1ψj . For 3 � x � y � n − 2 two odd integers, 
we then define:

Ψ
y

↓
x

:= ΨyΨy−2 . . . Ψx and Ψ
y

↑
x

:= ΨxΨx+2 . . . Ψy.

If y < x we consider both of the above defined terms to be the identity element of our field.

Remark. Given some T ∈ Dom(λ), let 2d be the number of entries in the leg of T which 
differ from the entries in the corresponding nodes of Tλ. Notice that these will consist of 
the final d dominoes in the leg, since T ∈ Std(λ).

Let j′1, . . . , j′d be the odd numbers (in ascending order) in the d dominoes in the leg 
of T which differ from the corresponding entries in Tλ and define ji := j′i − 2 for each i. 
For example, if λ = (7, 16) then

Tλ =

1 8 9 10111213
2
3
4
5
6
7

. Let T =

1 4 5 6 7 1011
2
3
8
9
12
13

.

Then d = 2 and we see that j1 = 7 and j2 = 11.
Now, we can see that vT can be written as the reduced expression

Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z.

We will refer to this as the normal form for vT . Notice that ji+1 > ji for all i =
1, . . . , d − 1. It will be useful to note that if vT ∈ D is in our normal form, then any 
expression obtained from it by deleting Ψ terms from the left is also an element in D .

Definition 5.2. Let T ∈ Dom(λ). We define the length r(T ) of T to be the number of Ψ
terms in the normal form of vT .

In the next three results, we examine the actions of the generators of H on the 
elements of D .

Lemma 5.3.

e(iλ)Ψj = Ψje(iλ) for all j,

ykΨj = Ψjyk for all k � j + 3 and for all k � j − 2,

ψkΨj = Ψjψk for all k � j + 3 and for all k � j − 3.

Proof. Clear from the definition of Ψj and the defining relations. �
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Proposition 5.4. Suppose T ∈ Dom(λ). Then

ykvT = 0 for all k; (A)
ψkvT = 0 for all even k; (B)
ψ1vT = 0. (C)

Proof. Let (Ar) denote the statement that (A) holds for all T with r(T ) = r, and 
define (Br) similarly. We first prove (Ar) and (Br) simultaneously, by induction on r.

First we must show that (A0) and (B0) hold. In this case, vT = z and the defining 
relations give our result immediately.

Now, let vT = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z be in normal form for some d, and define

vT(2) := Ψ
j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z.

We will show that (Ar−1) and (Br−1) ⇒ (Ar). We split our problem into 5 cases:

1. k = j1 + 2,
2. k = j1 + 1,
3. k = j1,
4. k = j1 − 1,
5. All other k.

We can now solve each case quite simply!

1. yj1+2vT = ψj1ψj1−1
(
yj1+2ψj1+1e(sj1 · iλ)

)
ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1−1(ψj1+1yj1+1 + 1)ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= Ψj1 yj1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

+ψj1ψj1−1ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= (ψj1−1ψj1ψj1−1 − yj1−1 + 2yj1 − yj1+1)Ψ
j1−2
↓

b+3−2d
vT(2)

= ψj1−1ψj1 ψj1−1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Br−1)

− yj1−1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

+ 2 yj1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

− yj1+1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

= 0.
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2. yj1+1vT =
(
yj1+1ψj1e(sj1 · iλ)

)
ψj1+1ψj1−1ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1+1
(
yj1ψj1−1e(sj1 · iλ)

)
ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1+1(ψj1−1yj1−1 + 1)ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= Ψj1 yj1−1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

+ψj1ψj1+1ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= (ψj1+1ψj1ψj1+1 + yj1 − 2yj1+1 + yj1+2)Ψ
j1−2
↓

b+3−2d
vT(2)

= 0 by (Ar−1) and (Br−1).

3. yj1vT =
(
yj1ψj1e(sj1 · iλ)

)
ψj1+1ψj1−1ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1

(
yj1+1ψj1+1e(sj1 · iλ)

)
ψj1−1ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1(ψj1+1yj1+2 − 1)ψj1−1ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= Ψj1 yj1+2Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

− (ψj1−1ψj1ψj1−1 − yj1−1 + 2yj1 − yj1+1)Ψ
j1−2
↓

b+3−2d
vT(2)

= 0 by (Ar−1) and (Br−1).

4. yj1−1vT = ψj1ψj1+1
(
yj1−1ψj1−1e(sj1 · iλ)

)
ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1+1(ψj1−1yj1− 1)ψj1Ψ
j1−2
↓

b+3−2d
vT(2)

= Ψj1 yj1+1Ψ
j1−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−1)

− (ψj1+1ψj1ψj1+1 + yj1− 2yj1+1 + yj1+2)Ψ
j1−2
↓

b+3−2d
vT(2)

= 0 by (Ar−1) and (Br−1).

5. Now suppose k �= j1 + 2, j1 + 1, j1 or j1 − 1. Then

ykvT = Ψj1ykΨ
j1−2
↓

b+3−2d
vT(2) by Lemma 5.3

= 0 by (Ar−1).
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Next, we show that (Ar−1) and (Br−1) ⇒ (Br). Once again we split this into the 
following cases:

1. k = j1 + 1,
2. k = j1 − 1,
3. All other k.

1. ψj1+1vT =
(
ψj1+1ψj1ψj1+1e(sj1 · iλ)

)
ψj1−1ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1+1
(
ψj1ψj1−1ψj1e(iλ)

)
Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1+1(ψj1−1ψj1ψj1−1 − yj1−1 + 2yj1 − yj1+1)Ψ
j1−2
↓

b+3−2d
vT(2)

= 0 by (Ar−1) and (Br−1).

2. ψj1−1vT =
(
ψj1−1ψj1ψj1−1e(sj1 · iλ)

)
ψj1+1ψj1Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1−1
(
ψj1ψj1+1ψj1e(iλ)

)
Ψ

j1−2
↓

b+3−2d
vT(2)

= ψj1ψj1−1(ψj1+1ψj1ψj1+1 + yj1 − 2yj1+1 + yj1+2)Ψ
j1−2
↓

b+3−2d
vT(2)

= 0 by (Ar−1) and (Br−1).

3. Now suppose k is even but k �= j1 + 1 or j1 − 1. Then

ψkvT = Ψj1ψkΨ
j1−2
↓

b+3−2d
vT(2) by Lemma 5.3

= 0 by (Br−1).

And so, our results follow.
Now, we prove (C). If d < b/2, then Ψ3 does not occur in vT , and so ψ1 commutes with 

all Ψ terms in vT and the result is clear. So suppose d = b/2. Then vT = Ψ
j1
↓
3
Ψ

j2
↓
5
. . . Ψ

jd
↓

b+1
z. 

It’s easy to see that

ψ1ψ2 . . . ψiΨ
j(i+2d−b+1)/2

↓
i+2

= Ψ
j(i+2d−b+1)/2

↓
i+4

ψi+2ψi+3(ψ1ψ2 . . . ψi+2).

Applying this for i = 1, 3, . . . , b − 1 in turn, we obtain

ψ1vT = Ψ
j1
↓
5
Ψ

j2
↓
7
. . . Ψ

jd
↓

b+3
ψ3ψ4 . . . ψb+2ψ1ψ2 . . . ψb+1z,

which is zero in view of the Garnir relation ψ1ψ2 . . . ψb+1z = 0. �
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Remark. A shorter but less direct proof of (Ar) and (Br) can be given using the grading 
on H and Sλ, closely mimicking the proof of [10, Lemma 4.4].

Lemma 5.5. Suppose j is odd and T ∈ Dom(λ). Then

1. ψjΨjvT = −2ψjvT ,
2. ψjΨj+2ΨjvT = ψjvT ,
3. Ψjψj+2vT = 0,
4. ψjΨj−2ΨjvT = ψjvT ,
5. Ψjψj−2vT = 0.

Proof.

1. ψjΨje(iλ)vT =
(
ψ2
j e(sj · iλ)

)
ψj+1ψj−1ψjvT

=
(
−y2

j − y2
j+1 + 2yjyj+1

)
ψj+1ψj−1ψjvT

= − ψj+1yj
(
yjψj−1e(sj · iλ)

)
ψjvT

− yj+1
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjvT

+ 2yj
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjvT

= − ψj+1yj(ψj−1yj−1 + 1)ψjvT

− yj+1(ψj+1yj+2 − 1)ψj−1ψjvT

+ 2yj(ψj+1yj+2 − 1)ψj−1ψjvT

= − ψj+1yjψjvT + ψj−1yj+1ψjvT − 2
(
yjψj−1e(sj · iλ)

)
ψjvT

= − ψj+1ψjyj+1vT + ψj−1ψjyjvT − 2(ψj−1yj−1 + 1)ψjvT

= − 2ψjvT .

2., 3., 4. and 5. We have

ψjΨj+2Ψje(iλ)vT = ψj+2ψj+3
(
ψjψj+1ψje(sj+2 · sj · iλ)

)
ψj+2ψj+1ψj−1ψj

= ψj+2ψj+3(ψj+1ψjψj+1 + yj − 2yj+1 + yj+2)ψj+2ψj+1ψj−1ψjvT

= ψj+2ψj+3ψj+1ψj

(
ψj+1ψj+2ψj+1e(sj · iλ)

)
ψj−1ψjvT

+ ψj+2ψj+3ψj+2ψj+1
(
yjψj−1e(sj · iλ)

)
ψjvT

− 2ψj+2ψj+3ψj+2
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjvT

+ ψj+2ψj+3
(
yj+2ψj+2e(sj · iλ)

)
ψj+1ψj−1ψjvT

= ψj+2ψj+3ψj+1ψjψj+2ψj+1ψj+2ψj−1ψjvT

+ ψj+2ψj+3ψj+2ψj+1(ψj−1yj−1 + 1)ψjvT

− 2ψj+2ψj+3ψj+2(ψj+1yj+2 − 1)ψj−1ψjvT

+ ψj+2ψj+3ψj+2yj+3ψj+1ψj−1ψjvT
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= Ψj+2Ψjψj+2vT + ψj+2ψj+3ψj+2ψj+1ψj−1ψj yj−1vT︸ ︷︷ ︸
=0

+
(
ψj+2ψj+3ψj+2e(sj · iλ)

)
ψj+1ψjvT

− 2ψj+2ψj+3ψj+2ψj+1ψj−1ψj yj+2vT︸ ︷︷ ︸
=0

+ 2
(
ψj+2ψj+3ψj+2e(sj · iλ)

)
ψj−1ψjvT

+ ψj+2ψj+3ψj+2ψj+1ψj−1ψj yj+3vT︸ ︷︷ ︸
=0

= Ψj+2Ψjψj+2vT + (ψj+3ψj+2ψj+3 + yj+2 − 2yj+3 + yj+4)

· ψj+1ψjvT + 2(ψj+3ψj+2ψj+3 + yj+2 − 2yj+3 + yj+4)ψj−1ψjvT

= Ψj+2Ψjψj+2vT + ψj+3ψj+2ψj+1ψj ψj+3vT︸ ︷︷ ︸
=0

+
(
yj+2ψj+1e(sj · iλ)

)
ψjvT + 2ψj+3ψj+2ψj−1ψj ψj+3vT︸ ︷︷ ︸

=0

= Ψj+2Ψjψj+2vT + (ψj+1yj+1 + 1)ψjvT

= Ψj+2Ψjψj+2vT + ψjvT + ψj+1yj+1ψjvT

= Ψj+2Ψjψj+2vT + ψjvT + ψj+1ψj yjvT︸︷︷︸
=0

.

We also have

ψjΨj−2Ψje(iλ)vT = ψj−2ψj−3
(
ψjψj−1ψje(sj−2 · sj · iλ)

)
ψj−2ψj+1ψj−1ψjvT

= ψj−2ψj−3(ψj−1ψjψj−1 − yj−1 + 2yj − yj+1)ψj−2ψj+1ψj−1ψjvT

= ψj−2ψj−3ψj−1ψj

(
ψj−1ψj−2ψj−1e(sj · iλ)

)
ψj+1ψjvT

− ψj−2ψj−3
(
yj−1ψj−2e(sj · iλ)

)
ψj+1ψj−1ψjvT

+ 2ψj−2ψj−3ψj−2ψj+1
(
yjψj−1e(sj · iλ)

)
ψjvT

− ψj−2ψj−3ψj−2
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjvT

= ψj−2ψj−3ψj−1ψjψj−2ψj−1ψj−2ψj+1ψjvT

− ψj−2ψj−3ψj−2yj−2ψj+1ψj−1ψjvT

+ 2ψj−2ψj−3ψj−2ψj+1(ψj−1yj−1 + 1)ψjvT

− ψj−2ψj−3ψj−2(ψj+1yj+2 − 1)ψj−1ψjvT

= Ψj−2Ψjψj−2vT − ψj−2ψj−3ψj−2ψj+1ψj−1ψj yj−2vT︸ ︷︷ ︸
=0

+ 2
(
ψj−2ψj−3ψj−2e(sj · iλ)

)
ψj+1ψjvT

+
(
ψj−2ψj−3ψj−2e(sj · iλ)

)
ψj−1ψjvT
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= Ψj−2Ψjψj−2vT

+ 2(ψj−3ψj−2ψj−3 − yj−3 + 2yj−2 − yj−1)ψj+1ψjvT

+ (ψj−3ψj−2ψj−3 − yj−3 + 2yj−2 − yj−1)ψj−1ψjvT

= Ψj−2Ψjψj−2vT + 2(0) −
(
yj−1ψj−1e(sj · iλ)

)
ψjvT

= Ψj−2Ψjψj−2vT − (ψj−1yj − 1)ψjvT

= Ψj−2Ψjψj−2vT − 0 + ψjvT .

So we have

ψjΨj+2ΨjvT = ψjvT + Ψj+2Ψjψj+2vT (∗)

ψjΨj−2ΨjvT = ψjvT + Ψj−2Ψjψj−2vT . (∗∗)

Now all four statements will follow if we can show that 3 and 5 hold. We will pro-
ceed by proving both simultaneously by induction on r(T ). That is, we will prove 
that

Ψjψj+2vT = 0 for any odd j and r(T ) = r, (Ar)

Ψjψj−2vT = 0 for any odd j and r(T ) = r, (Br)

by simultaneous induction on r.
First, we prove that (Ar) follows if (As) and (Bs) hold for all s < r.
(A0) is clearly true. We have Ψjψj+2z = ψjψj+1ψj−1ψj+2ψjz = 0 since at least one 
of ψj , ψj+2 must annihilate z.

Now let r > 0. Suppose vT = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z is in normal form and define 

vT ′ := Ψ
j1−2
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z.

If j1 � j + 6 or j1 � j − 4, then we clearly have Ψjψj+2vT = Ψj1Ψjψj+2vT ′ and our 
result follows by (Ar−1). So we break our proof up for the remaining four possibili-
ties.
(a) Suppose j1 = j+4. We will write vT(2) := Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z. If b +3 −2d = j+4

also, we have

Ψjψj+2vT = Ψjψj+2Ψj+4vT(2)

= 0,

as we have a ψj which commutes with everything to its right, given that the 
lowest indexed Ψ -term in vT(2) is Ψj+6.
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If b + 3 − 2d < j + 4 we have

Ψj(ψj+2Ψj+4Ψj+2)Ψ
j

↓
b+3−2d

vT(2)

= Ψj(ψj+2 + Ψj+4Ψj+2ψj+4)Ψ
j

↓
b+3−2d

vT(2) by (∗)

= 0 by (As) for some s < r, as Ψ
j

↓
b+3−2d

vT(2) ∈ D .

(b) Suppose j1 = j + 2. Then we have

Ψjψj+2Ψj+2vT ′ = −2Ψjψj+2vT ′ by part 1,
= 0 by (Ar−1), as r

(
T ′) = r − 1.

(c) Suppose j1 = j. Then we have

Ψjψj+2ΨjvT ′ = −2Ψjψj+2vT ′ by part 1,
= 0 by (Ar−1).

(d) Suppose j1 = j − 2. We will write vT(3) := Ψ
j3
↓

b+7−2d
. . . Ψ

jd
↓

b+1
z. Here, we must 

divide into further subcases.
i. Suppose j2 � j + 4. Then we have

Ψjψj+2vT = Ψjψj+2Ψ
j−2
↓

b+3−2d
Ψ

j2
↓

j+6
Ψj+4Ψj+2Ψ

j

↓
b+5−2d

vT(3)

= Ψ
j2
↓

j+6
ΨjΨ

j−2
↓

b+3−2d
(ψj+2Ψj+4Ψj+2)Ψ

j

↓
b+5−2d

vT(3)

= Ψ
j2
↓

j+6
ΨjΨ

j−2
↓

b+3−2d
(ψj+2 + Ψj+4Ψj+2ψj+4)Ψ

j

↓
b+5−2d

vT(3) by (∗)

= Ψ
j2
↓

j+6
Ψjψj+2Ψ

j−2
↓

b+3−2d
Ψ

j

↓
b+5−2d

vT(3) + 0

by (As) for some s < r, as Ψ
j

↓
b+5−2d

vT(3) ∈ D ,

= 0 by (As′) for some s′ < r, as Ψ
j−2
↓

b+3−2d
Ψ

j

↓
b+5−2d

vT(3) ∈ D .

ii. Suppose j2 = j + 2. Then we have

Ψjψj+2vT = Ψjψj+2Ψ
j−2
↓

b+3−2d
Ψj+2Ψ

j

↓
b+5−2d

vT(3)

= ΨjΨ
j−2
↓ ψj+2Ψj+2Ψ

j

↓ vT(3)

b+3−2d b+5−2d
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= −2ΨjΨ
j−2
↓

b+3−2d
ψj+2Ψ

j

↓
b+5−2d

vT(3) by part 1,

= −2Ψjψj+2Ψ
j−2
↓

b+3−2d
Ψ

j

↓
b+5−2d

vT(3)

= 0 by (As) for some s < r, as Ψ
j−2
↓

b+3−2d
Ψ

j

↓
b+5−2d

vT(3) ∈ D .

iii. Suppose j2 = j. Then we have

Ψjψj+2vT = Ψjψj+2Ψ
j−2
↓

b+3−2d
ΨjΨ

j−2
↓

b+5−2d
vT(3)

= ψjψj+1ψj−1ψj+2ψj−2︸ ︷︷ ︸
=:ψ∗

(
ψjψj−1ψje(sj−2 · sj · iλ)

)

· ψj−3ψj−2ψj+1ψj−1ψj Ψ
j−4
↓

b+3−2d
Ψ

j−2
↓

b+5−2d
vT(3)︸ ︷︷ ︸

=:vT ′′∈D

= ψ∗(ψj−1ψjψj−1 − yj−1 + 2yj − yj+1)ψj−3ψj−2ψj+1ψj−1ψjvT ′′

= ψ∗ψj−1ψjψj−3
(
ψj−1ψj−2ψj−1e(sj · iλ)

)
ψj+1ψjvT ′′

− ψ∗ψj−3
(
yj−1ψj−2e(sj · iλ)

)
ψj+1ψj−1ψjvT ′′

+ 2ψ∗ψj−3ψj−2ψj+1
(
yjψj−1e(sj · iλ)

)
ψjvT ′′

− ψ∗ψj−3ψj−2
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjvT ′′

= ψ∗ψj−1ψjψj−3ψj−2ψj−1ψj−2ψj+1ψjvT ′′

− ψ∗ψj−3ψj−2yj−2ψj+1ψj−1ψjvT ′′

+ 2ψ∗ψj−3ψj−2ψj+1(ψj−1yj−1 + 1)ψjvT ′′

− ψ∗ψj−3ψj−2(ψj+1yj+2 − 1)ψj−1ψjvT ′′

= ψ∗ψj−1ψj−3ψj−2 Ψjψj−2vT ′′︸ ︷︷ ︸
=0 by (Br−2)

− 0 + 0

+ 2ψjψj+1ψj−1ψj+2︸ ︷︷ ︸
=:ψ∗

ψj−2ψj−3ψj−2ψj+1ψjvT ′′

− 0 + ψ∗ψj−2ψj−3ψj−2ψj−1ψjvT ′′

= 2ψ∗(ψj−2ψj−3ψj−2e(sj · iλ)
)
ψj+1ψjvT ′′

+ ψ∗(ψj−2ψj−3ψj−2e(sj · iλ)
)
ψj−1ψjvT ′′

= 2ψ∗(ψj−3ψj−2ψj−3 − yj−3 + 2yj−2 − yj−1)ψj+1ψjvT ′′

+ ψ∗(ψj−3ψj−2ψj−3 − yj−3 + 2yj−2 − yj−1)ψj−1ψjvT ′′
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= 2ψ∗ψj−3ψj−2ψj+1ψj ψj−3vT ′′︸ ︷︷ ︸
=0 as j−3 is even

− 0 + 0 − 0

+ ψ∗ψj−3ψj−2ψj−1ψj ψj−3vT ′′︸ ︷︷ ︸
=0

− 0 + 0

− ψ∗(yj−1ψj−1e(sj · iλ)
)
ψjvT ′′

= −ψ∗(ψj−1yj − 1)ψjvT ′′

= −ψ∗ψj−1ψjyj+1vT ′′ + ψ∗ψjvT ′′

= −0 + Ψjψj+2vT ′′︸ ︷︷ ︸
=0 by (Ar−2)

.

Next, we show that (Br) follows if (As) and (Bs) hold for all s < r.
For (B0), we have Ψjψj−2z = ψjψj+1ψj−1ψj−2ψjz = 0 as at least one of ψj , ψj−2
must annihilate z.
Now suppose r > 0.
If j1 � j + 4 or j1 � j − 6, then we clearly have Ψjψj−2vT = Ψj1Ψjψj−2vT ′ and our 
result follows from (Br−1). Once again, we break the proof up for the remaining four 
possible values of j1.
(a) Suppose j1 = j + 2. If b + 3 − 2d = j + 2 then we have

Ψjψj−2vT = Ψjψj−2Ψj+2vT(2)

= 0

as ψj−2 commutes with everything to its right, since the lowest indexed term in 
vT(2) is Ψj+4.
If b + 3 − 2d � j, we have

Ψjψj−2vT = Ψjψj−2Ψj+2ΨjΨ
j−2
↓

b+3−2d
vT(2)

= ψjψj+1ψj−1ψj−2ψj+2ψj+3︸ ︷︷ ︸
=:ψ∗

(
ψjψj+1ψje(sj+2 · sj · iλ)

)

· ψj+2ψj+1ψj−1ψjΨ
j−2
↓

b+3−2d
vT(2)

= ψ∗(ψj+1ψjψj+1 + yj − 2yj+1 + yj+2)ψj+2ψj+1ψj−1ψjΨ
j−2
↓

b+3−2d
vT(2)

= ψ∗ψj+1ψj

(
ψj+1ψj+2ψj+1e(sj · iλ)

)
ψj−1ψjΨ

j−2
↓

b+3−2d
vT(2)

+ ψ∗ψj+2ψj+1
(
yjψj−1e(sj · iλ)

)
ψjΨ

j−2
↓ vT(2)
b+3−2d
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− 2ψ∗ψj+2
(
yj+1ψj+1e(sj · iλ)

)
ψj−1ψjΨ

j−2
↓

b+3−2d
vT(2)

+ ψ∗
(
yj+2ψj+2e(sj · iλ)

)
ψj+1ψj−1ψjΨ

j−2
↓

b+3−2d
vT(2)

= ψ∗ψj+1ψjψj+2ψj+1ψj+2ψj−1ψjΨ
j−2
↓

b+3−2d
vT(2)

+ ψ∗ψj+2ψj+1(ψj−1yj−1 + 1)ψjΨ
j−2
↓

b+3−2d
vT(2)

− 2ψ∗ψj+2(ψj+1yj+2 − 1)ψj−1ψjΨ
j−2
↓

b+3−2d
vT(2)

+ ψ∗ψj+2yj+3ψj+1ψj−1ψjΨ
j−2
↓

b+3−2d
vT(2)

= ψ∗ψj+1ψj+2 Ψjψj+2Ψ
j−2
↓

b+3−2d
vT(2)︸ ︷︷ ︸

=0 by (Ar−2)

+ 0 + ψjψj+1ψj−1ψj−2
(
ψj+2ψj+3ψj+2e(sj · iλ)

)
· ψj+1ψjΨ

j−2
↓

b+3−2d
vT(2)

− 0 + 2ψjψj+1ψj−1ψj−2
(
ψj+2ψj+3ψj+2e(sj · iλ)

)
· ψj−1ψjΨ

j−2
↓

b+3−2d
vT(2) + 0

=
(
ψjψj+1ψj−1ψj−2(ψj+3ψj+2ψj+3 + yj+2 − 2yj+3 + yj+4)ψj+1

+ 2ψjψj+1ψj−1ψj−2(ψj+3ψj+2ψj+3 + yj+2 − 2yj+3 + yj+4)ψj−1
)

· ψjΨ
j−2
↓

b+3−2d
vT(2)

= 0 + ψjψj+1ψj−1ψj−2
(
yj+2ψj+1e(sj · iλ)

)
ψjΨ

j−2
↓

b+3−2d
vT(2) − 0 + 0

+ 0 + 0 − 0 + 0

= ψjψj+1ψj−1ψj−2(ψj+1yj+1 + 1)ψjΨ
j−2
↓

b+3−2d
vT(2)

= 0 + Ψjψj−2Ψ
j−2
↓

b+3−2d
vT(2)

= 0 by (Br−2).

(b) Suppose j1 = j. Then we have

Ψjψj−2vT = −2Ψjψj−2vT ′ by part 1,
= 0 by (Bs−1).
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(c) Suppose j1 = j − 2. Then we have

Ψjψj−2vT = −2Ψjψj−2vT ′ by part 1,

= 0 by (Br−1).

(d) Suppose j1 = j − 4. We divide into subcases.
i. Suppose j2 � j + 2. Then we have

Ψjψj−2vT = Ψjψj−2Ψj−4Ψ
j−6
↓

b+3−2d
Ψ

j2
↓

j+4
Ψj+2ΨjΨ

j−2
↓

b+5−2d
vT(3)

= ψjψj+1ψj−1ψj−2Ψj−4Ψ
j−6
↓

b+3−2d
Ψ

j2
↓

j+4
(ψjΨj+2Ψj)Ψ

j−2
↓

b+5−2d
vT(3)

= ψjψj+1ψj−1ψj−2Ψj−4Ψ
j−6
↓

b+3−2d
Ψ

j2
↓

j+4
(ψj + Ψj+2Ψjψj+2)

·Ψ
j−2
↓

b+5−2d
vT(3) by (∗),

= Ψjψj−2Ψ
j−4
↓

b+3−2d
Ψ

j2
↓

j+4
Ψ

j−2
↓

b+5−2d
vT(3)

+ 0 by (As) for some s < r, as Ψ
j−2
↓

b+5−2d
vT(3) ∈ D ,

= 0 by (Bs′) for some s′ < r, as Ψ
j−4
↓

b+3−2d
Ψ

j2
↓

j+4
Ψ

j−2
↓

b+5−2d
vT(3) ∈ D .

ii. Suppose j2 = j. Then we have

Ψjψj−2vT = Ψjψj−2Ψ
j−4
↓

b+3−2d
ΨjΨ

j−2
↓

b+5−2d
vT(3)

= −2Ψjψj−2Ψ
j−4
↓

b+3−2d
Ψ

j−2
↓

b+5−2d
vT(3) by part 1,

= 0 by (Br−1), as Ψ
j−4
↓

b+3−2d
Ψ

j−2
↓

b+5−2d
vT(3) ∈ D .

iii. Suppose j2 = j − 2. Then we have

Ψjψj−2vT = Ψjψj−2Ψj−4Ψj−2 Ψ
j−6
↓

b+3−2d
Ψ

j−4
↓

b+5−2d
vT(3)︸ ︷︷ ︸

=:vT ′′

= Ψjψj−4ψj−5
(
ψj−2ψj−3ψj−2e(sj−4 · sj−2 · iλ)

)
· ψj−4ψj−1ψj−3ψj−2vT ′′
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= Ψjψj−4ψj−5(ψj−3ψj−2ψj−3 − yj−3 + 2yj−2 − yj−1)

· ψj−4ψj−1ψj−3ψj−2vT ′′

= Ψjψj−4ψj−5ψj−3ψj−2
(
ψj−3ψj−4ψj−3e(sj−2 · iλ)

)
ψj−1ψj−2vT ′′

− Ψjψj−4ψj−5
(
yj−3ψj−4e(sj−2 · iλ)

)
ψj−1ψj−3ψj−2vT ′′

+ 2Ψjψj−4ψj−5ψj−4ψj−1
(
yj−2ψj−3e(sj−2 · iλ)

)
ψj−2vT ′′

− Ψjψj−4ψj−5ψj−4
(
yj−1ψj−1e(sj−2 · iλ)

)
ψj−3ψj−2vT ′′

= Ψjψj−4ψj−5ψj−3ψj−2ψj−4ψj−3ψj−4ψj−1ψj−2vT ′′

− Ψjψj−4ψj−5ψj−4yj−4ψj−1ψj−3ψj−2vT ′′

+ 2Ψjψj−4ψj−5ψj−4ψj−1(ψj−3yj−3 + 1)ψj−2vT ′′

− Ψjψj−4ψj−5ψj−4(ψj−1yj − 1)ψj−3ψj−2vT ′′

= Ψjψj−4ψj−5ψj−3ψj−4 Ψj−2ψj−4vT ′′︸ ︷︷ ︸
=0 by (Br−2)

− 0

+ 0 + 2Ψj

(
ψj−4ψj−5ψj−4e(sj−2 · iλ)

)
ψj−1ψj−2vT ′′

− 0 + Ψj

(
ψj−4ψj−5ψj−4e(sj−2 · iλ)

)
ψj−3ψj−2vT ′′

= 2Ψj(ψj−5ψj−4ψj−5 − yj−5 + 2yj−4 − yj−3)ψj−1ψj−2vT ′′

+ Ψj(ψj−5ψj−4ψj−5 − yj−5 + 2yj−4 − yj−3)ψj−3ψj−2vT ′′

= 0 − 0 + 0 − 0 + 0 − 0 + 0 − Ψj

(
yj−3ψj−3e(sj−2 · iλ)

)
ψj−2vT ′′

= −Ψj(ψj−3yj−2 − 1)ψj−2vT ′′

= 0 + Ψjψj−2vT ′′

= 0 by (Br−2).

Note that both inductive steps are possible because vT ′′ ∈ D .
This completes our proof of statements 2–5. �

In the next two results, we are concerned with how the Garnir element ψ1ψ2 . . . ψb+1
acts on elements of D .

Lemma 5.6. Suppose j is odd with 3 � j � n − 2, and T ∈ Dom(λ). Then

1. For all odd n − 2 � i � j + 4, ψ1ψ2 . . . ψjΨivT = Ψiψ1ψ2 . . . ψjvT .
2. ψ1ψ2 . . . ψjΨj+2vT = ψj+2ψj+3ψ1ψ2 . . . ψj+2vT .
3. ψ1ψ2 . . . ψjΨjvT = −2ψ1ψ2 . . . ψjvT .
4. ψ1ψ2 . . . ψjΨj−2vT = Ψj−1ψ1ψ2 . . . ψjvT + ψjψj−1ψ1ψ2 . . . ψj−2vT .
5. For all odd 3 � i � j − 4,

ψ1ψ2 . . . ψjΨivT = Ψi+1ψ1ψ2 . . . ψjvT + ψi+2ψi+1ψi+3ψi+4 . . . ψjψ1ψ2 . . . ψivT .
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Proof. 1 and 2 follow immediately from definitions and the commuting relations be-
tween ψ generators. 3 follows immediately from Lemma 5.5. So only statements 4 and 5 
require any real work!

4. ψ1ψ2 . . . ψjΨj−2vT = ψ1ψ2 . . . ψj−4︸ ︷︷ ︸
=:ψ∗

ψj−3
(
ψj−2ψj−1ψj−2e(sj · sj−2 · iλ)

)

· ψjψj−1ψj−3ψj−2vT

= ψ∗ψj−3(ψj−1ψj−2ψj−1 + yj−2 − 2yj−1 + yj)

· ψjψj−1ψj−3ψj−2vT

= ψj−1ψ
∗ψj−3ψj−2

(
ψj−1ψjψj−1e(sj−2 · iλ)

)
ψj−3ψj−2vT

+ ψjψj−1ψ
∗ψj−3

(
yj−2ψj−3e(sj−2 · iλ)

)
ψj−2vT

− 2ψjψ
∗ψj−3

(
yj−1ψj−1e(sj−2 · iλ)

)
ψj−3ψj−2vT

+ ψ∗ψj−3
(
yjψje(sj−2 · iλ)

)
ψj−1ψj−3ψj−2vT

= ψj−1ψ
∗ψj−3ψj−2(ψjψj−1ψj)ψj−3ψj−2vT

+ ψjψj−1ψ
∗ψj−3(ψj−3yj−3 + 1)ψj−2vT

− 2ψjψ
∗ψj−3(ψj−1yj − 1)ψj−3ψj−2vT

+ ψ∗ψj−3(ψjyj+1)ψj−1ψj−3ψj−2vT

= ψj−1ψjψ
∗(ψj−3ψj−2ψj−3e(sj−1 · sj · sj−2 · iλ)

)
ψj−1ψjψj−2vT

+ 0 + ψjψj−1ψ
∗ψj−3ψj−2vT

− 0 + 2ψjψ
∗(ψ2

j−3e(sj−2 · iλ)
)
ψj−2vT + 0

= ψj−1ψjψ
∗(ψj−2ψj−3ψj−2)ψj−1ψjψj−2vT

+ ψjψj−1ψ
∗ψj−3ψj−2vT + 0

= ψj−1ψjψj−2ψ
∗ψj−3

(
ψj−2ψj−1ψj−2e(sj · iλ)

)
ψjvT

+ ψjψj−1ψ
∗ψj−3ψj−2vT

= ψj−1ψjψj−2ψ
∗ψj−3(ψj−1ψj−2ψj−1)ψjvT

+ ψjψj−1ψ
∗ψj−3ψj−2vT

= Ψj−1ψ
∗ψj−3ψj−2ψj−1ψjvT + ψjψj−1ψ

∗ψj−3ψj−2vT .

5. Let i be odd and 4 � i � j − 4. Then

ψ1ψ2 . . . ψjΨivT = ψ1ψ2 . . . ψi−2︸ ︷︷ ︸
ψ∗

ψi−1ψiψi+1ψi+2Ψiψi+3 ψi+4 . . . ψj︸ ︷︷ ︸
ψ∗

vT

= ψ∗ψi−1
(
ψiψi+1ψie(si+2 · si · si+4 · si+6 · · · sj · iλ)

)
· ψi+2ψi+1ψi−1ψiψi+3ψ

∗vT

= ψ∗ψi−1(ψi+1ψiψi+1 + yi − 2yi+1 + yi+2)
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· ψi+2ψi+1ψi−1ψiψi+3ψ
∗vT

= ψi+1ψ∗ψi−1ψi

(
ψi+1ψi+2ψi+1e(si · si+4 · si+6 · · · sj · iλ)

)
· ψi−1ψiψi+3ψ

∗vT

+ ψi+2ψi+1ψ∗ψi−1
(
yiψi−1e(si · si+4 · si+6 · · · sj · iλ)

)
· ψiψi+3ψ

∗vT

− 2ψi+2ψ∗ψi−1
(
yi+1ψi+1e(si · si+4 · si+6 · · · sj · iλ)

)
· ψi−1ψiψi+3ψ

∗vT

+ ψ∗ψi−1
(
yi+2ψi+2e(si · si+4 · si+6 · · · sj · iλ)

)
· ψi+1ψi−1ψiψi+3ψ

∗vT

= ψi+1ψ∗ψi−1ψi(ψi+2ψi+1ψi+2)ψi−1ψiψi+3ψ
∗vT

+ ψi+2ψi+1ψ∗ψi−1(ψi−1yi−1 + 1)ψiψi+3ψ
∗vT

− 2ψi+2ψ∗ψi−1(ψi+1yi+2 − 1)ψi−1ψiψi+3ψ
∗vT

+ ψ∗ψi−1(ψi+2yi+3)ψi+1ψi−1ψiψi+3ψ
∗vT

= ψi+1ψi+2ψ∗
(
ψi−1ψiψi−1e(si+1 · si+2 · si · si+4 · · · sj · iλ)

)
· ψi+1ψi+2ψiψi+3ψ

∗vT + 0 + ψi+2ψi+1ψ∗ψi−1ψiψi+3ψ
∗vT

− 0 + 2ψi+2ψ∗
(
ψ2
i−1e(si · si+4 · si+6 · · · sj · iλ)

)
ψiψi+3ψ

∗vT

+ ψi+2ψi+1ψ∗
(
ψ2
i−1e(si · si+4 · si+6 · · · sj · iλ)

)
ψiyi+3ψi+3ψ

∗vT

= ψi+1ψi+2ψ∗(ψiψi−1ψi)ψi+1ψi+2ψiψi+3ψ
∗vT

+ ψi+2ψi+1ψi+3ψ
∗ψ∗ψi−1ψivT + 0 + 0

= ψi+1ψi+2ψiψ∗ψi−1
(
ψiψi+1ψie(si+2 · si+4 · · · sj · iλ)

)
· ψi+2ψi+3ψ

∗vT + ψi+2ψi+1ψi+3ψ
∗ψ∗ψi−1ψivT

= ψi+1ψi+2ψiψ∗ψi−1(ψi+1ψiψi+1)ψi+2ψi+3ψ
∗vT

+ ψi+2ψi+1ψi+3ψ
∗ψ∗ψi−1ψivT

= Ψi+1ψ∗ψi−1ψiψi+1ψi+2ψi+3ψ
∗vT

+ ψi+2ψi+1ψi+3ψ
∗ψ∗ψi−1ψivT . �

Proposition 5.7. Let T ∈ Dom(λ). Then ψ1ψ2 . . . ψb+1vT = 0.

Proof. Repeated application of the above lemma yields ψ1ψ2 . . . ψb+1vT as a sum of 
expressions ending in ψ1ψ2 . . . ψjz for various odd values of j � 3. In all cases the 
relations of the Specht module give us our result. �
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6. Decomposability when n is odd

We can now begin calculating H -endomorphisms of Sλ. We now know that f ∈
EndH (Sλ) if and only if

f(z) =
∑

T∈Dom(λ)

αT vT for some αT ∈ F

with ψjf(z) = 0 for all odd j �= b + 1 with 3 � j � n − 2.

Definition 6.1. Let i, j be odd integers with 3 � i � b +1 < j � n. We will denote by Ti,j

the tableau with dominoes {[2, 3], [4, 5], . . . , [b, b + 1], [j − 1, j]} \ {[i − 1, i]} in the leg.

Example. If λ = (5, 14) then T5,9 =

1 4 5 6 7
2
3
8
9

and T3,7 =

1 2 3 8 9
4
5
6
7

.

Remark. We observe that the normal form for vTi,j
is Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z.

Proposition 6.2. Suppose a is odd and b is even. Then there exists an H -endomorphism f

of Sλ given by

f(z) =
∑

3�i�b+1
b+3�j�n
i,j odd

i− 1
2 · n + 2 − j

2 vTi,j
.

Proof. All we need to show is that ψkf(z) = 0 for all odd k �= b + 1 with 3 � k � n − 2. 
We will rely extensively on our previous results regarding the actions of ψ generators on 
tableaux.

First, notice that ψ3vTi,j
= 0 for all i � 7. So

ψ3f(z) = ψ3

(∑
j

2 · n + 2 − j

2 vT5,j + n + 2 − j

2 vT3,j

)

=
∑
j

n + 2 − j

2 (2ψ3 · vT5,j − 2ψ3 · vT5,j )

= 0.

Next, suppose 5 � k � b − 1. We notice that ψkvTi,j
= 0 for all i � k − 4 and for all 

i � k + 4. So
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ψkf(z) = ψk

(∑
j

k + 1
2 · n + 2 − j

2 vTk+2,j + k − 1
2 · n + 2 − j

2 vTk,j

+ k − 3
2 · n + 2 − j

2 vTk−2,j

)

=
∑
j

n + 2 − j

2

(
k + 1

2 − 2 · k − 1
2 + k − 3

2

)
ψkvTk+2,j

= 0.

Now, for b + 3 � k � n − 4, we notice that ψkvTi,j
= 0 for all j � k − 2 and for all 

j � k + 6. So

ψkf(z) = ψk

(∑
i

i− 1
2 · n + 2 − k

2 vTi,k
+ i− 1

2 · n− k

2 vTi,k+2

+ i− 1
2 · n− k − 2

2 vTi,k+4

)

=
∑
i

i− 1
2

(
n + 2 − k

2 − 2 · n− k

2 + n− k − 2
2

)
ψkvTi,k

= 0.

Finally, we notice that ψn−2vTi,j
= 0 unless j = n − 2 or n. So

ψn−2f(z) = ψn−2

(∑
i

i− 1
2 · 2 · vTi,n−2 + i− 1

2 vTi,n

)

=
∑
i

(i− 1)ψn−2vTi,n−2 − 2 · i− 1
2 ψn−2vTi,n−2

= 0. �
Remark. This endomorphism allows us to tackle our decomposability question. In par-
ticular, Sλ can be decomposed into a direct sum of the generalised eigenspaces of f . That 
is Ex = {v ∈ Sλ |(f − xI)nv = 0 for some n ∈ N} for each eigenvalue x of f , and

Sλ =
⊕

x an eigenvalue of f

Ex.

From the definition of Ex it is clear that it is a non-zero H -module whenever x is an 
eigenvalue of f . The existence of two distinct eigenvalues of f would ensure that we have 
at least two non-trivial summands in the decomposition above, and we would be done.

The following lemma will be used repeatedly in further proofs.
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Lemma 6.3. Suppose x1 � y1 � 3 and x2 � y2 � 3 are all odd numbers. Suppose also 
that X ∈ e(iλ)Sλ. Then we have the following cancellation relations:

1. If x1 � x2 � y1 we have

Ψ
x1
↓
y1

Ψ
x2
↓
y2

X = Ψ
x2−4
↓
y1

Ψ
x1
↓
y2

X.

2. If x2 � y1 � y2 we have

Ψ
x1
↓
y1

Ψ
x2
↓
y2

X = Ψ
x1
↓
y2

Ψ
x2
↓

y1+4
X.

Proof.

1. Ψ
x1
↓
y1

Ψ
x2
↓
y2

X = Ψ
x1
↓

x2+2
Ψx2Ψx2−2Ψ

x2−4
↓
y1

Ψ
x2
↓
y2

X

= Ψ
x1
↓

x2+2
Ψx2Ψx2−2Ψx2Ψ

x2−4
↓
y1

Ψ
x2−2
↓
y2

X

= Ψ
x1
↓

x2+2
Ψx2Ψ

x2−4
↓
y1

Ψ
x2−2
↓
y2

X

= Ψ
x2−4
↓
y1

Ψ
x1
↓
y2

X.

2. The proof proceeds similarly to the previous case. �
Now, we work towards computing the eigenvalues of f . It is clear that f acts on 

e(iλ)Sλ; f(vT ) ∈ e(iλ)Sλ whenever T ∈ Dom(λ) by the nature of our actions of ψ
generators on elements of D . We will show that the action of f on e(iλ)Sλ is triangular. 
Take T ∈ Dom(λ), and write vT in normal form:

vT = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z.

Then we want to look at

f(vT ) = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
· f(z)

=
∑

3�i�b+1
b+3�j�n
i,j odd

i− 1
2 · n + 2 − j

2 Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
·Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z.

We begin by looking at the simplified case where d = 1.
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Lemma 6.4. Let 3 � i � b + 1 < j � n and jd � b + 1. Then

Ψ
jd
↓

b+1
·Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2Ψ
jd
↓

b+1
z if i = b + 1 and j = b + 3,

Ψ
jd
↓

b+1
z if i = b + 1 and j = b + 5,

0 if i = b + 1 and j � b + 7,

Ψ
jd
↓

b+1
z if i = b− 1 and j = b + 3,

Ψ
b−3
↑
i
Ψ

jd
↓

b−1
Ψ

j−2
↓

b+1
z if i � b− 1 and jd � j − 4,

0 if i < b− 1 and jd � j − 2 and j = b + 3,

Ψ
b−3
↑
i
Ψ

j−6
↓

b−1
Ψ

jd
↓

b+1
z if i � b− 1 and jd � j − 2 and j � b + 5.

Proof. First suppose i = b + 1. If j = b + 3 we have

Ψ
jd
↓

b+1
Ψb+1z = −2Ψ

jd
↓

b+1
z.

If j = b + 5 we have

Ψ
jd
↓

b+1
·Ψb+3Ψb+1z = Ψ

jd
↓

b+1
z.

If j � b + 7 we have

Ψ
jd
↓

b+1
·Ψ

j−2
↓

b+1
z = Ψ

jd
↓

b+1
·Ψ

j−2
↓

b+5
z

= 0.

If i = b − 1 and j = b + 3 we have

Ψ
jd
↓

b+1
·Ψb−1Ψb+1z = Ψ

jd
↓

b+1
z.

Next, suppose i � b − 1. If jd � j − 4 we already have an expression in reduced form 
and the commuting relations alone put it into our normal form to give the stated result.

So let jd � j − 2. Suppose i < b − 1 and j = b + 3. Then we have

Ψ
jd
↓

b+1
·Ψ

b−1
↑
i
Ψb+1z = Ψ

jd
↓

b+3
·Ψ

b−3
↑
i
Ψb+1Ψb−1Ψb+1z

= Ψ
jd
↓

b+1
·Ψ

b−3
↑
i
z

= 0.
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Finally, let j � b + 5. Then we have

Ψ
jd
↓

b+1
·Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z = Ψ

b−3
↑
i
Ψ

jd
↓

b−1
Ψ

j−2
↓

b+1
z

= Ψ
b−3
↑
i
Ψ

j−6
↓

b−1
Ψ

jd
↓

b+1
z

which is reduced and in our normal form. �
Proposition 6.5. Suppose vT = Ψ

j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
z ∈ D is in reduced normal form, 

i and j are odd with 3 � i � b + 1 < j � n and let

(∗) = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
·Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z.

Then (∗) is a scalar multiple of either vT or some longer Ψ -expression. In particular, 
(∗) is a scalar multiple of vT in precisely the following cases:

(∗) = vT if
• i + j = 2b + 6, i � b + 3 − 2d, jv � j − 4 − 4(d − v) for all v;
• i + j = 2b + 2, i � b + 1 − 2d and jv � j − 2 − 4(d − v) for all v.

(∗) = −2vT if
• i + j = 2b + 4, i � b + 3 − 2d and jv � j − 2 − 4(d − v) for all v.

Proof. We will use the previous lemma and work down the cases in the order they appear 
above. We will always look to put expressions into reduced normal form.

1. Let d > 0. When i = b +1, we can clearly see that we get (∗) = −2vT when j = b +3, 
(∗) = vT when j = b +5 and (∗) = 0 otherwise. It is also clear that when i = b −1 and 
j = b + 3 we have (∗) = vT , so in all further cases we will ignore this combination.

2. If i � b − 1 and jd � j − 4, we must split into two subcases.
(a) First suppose i � b + 1 − 2d. Then we have

Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd
↓

b+1
·Ψ

b−1
↑
i
Ψ

j−2
↓

b+1
z

= Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd−1

↓
b−1

·Ψ
b−3
↑
i
Ψ

jd
↓

b−1
Ψ

j−2
↓

b+1
z

= Ψ
b−1−2d

↑
i

Ψ
j1
↓

b+1−2d
Ψ

j2
↓

b+3−2d
. . . Ψ

jd
↓

b−1
Ψ

j−2
↓

b+1
z.

The above expression is reduced and longer than vT .
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(b) If i � b + 3 − 2d, say i = ks − 2 = b − 1 − 2d + 2s for some s � 2, we have

(∗) = Ψ
j1
↓

b+3−2d
. . . Ψ

js−1

↓
b−1−2(d−s)︸ ︷︷ ︸

=:Ψ∗

·Ψ
js
↓

b−1−2(d−s)
Ψ

js+1

↓
b+1−2(d−s)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z.

Claim. Suppose for some s − 1 � u � d − 1 we have jv � b + 3 − 2(d + s − 2v)
for all s − 1 � v � u. Then the above expression is equal to

Ψ∗Ψ
js
↓

b+1−2(d−s)
. . . Ψ

ju
↓

b+1+2(d−u)
Ψ

ju+1

↓
b+7−2(d+s−2u)

Ψ
ju+2

↓
b+3−2(d−u)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z.

If for the maximal such u we have u � d −2, the expression above is reduced and 
longer than vT .

Assuming the claim to be true, we need to look at what happens if the condition 
in the claim holds for u = d − 1. In this instance, by the claim we have

(∗) = Ψ∗Ψ
js
↓

b+1−2(d−s)
. . . Ψ

jd−1

↓
b−1

Ψ
jd
↓

b+3+2(d−s)
Ψ

j−2
↓

b+1
z

=

⎧⎪⎪⎨
⎪⎪⎩

−2vT if j = b + 5 + 2(d− s) and jd � b + 3 + 2(d− s),
vT if j = b + 7 + 2(d− s) and jd � b + 3 + 2(d− s),
0 if j � b + 9 + 2(d− s) and jd � b + 3 + 2(d− s),
vS otherwise, where vS is some expression longer than vT .

Note that the first case above never actually occurs here, by the condition that 
jd � j−4. We can see that we get (∗) = vT precisely when jv � b +3 −2(d +s −2v)
for all s − 1 � v � d − 1 and jd = b + 3 + 2(d − s) = j − 4.
Finally, we prove the claim, by induction on u. When u = s − 1, we have that 
js−1 � b −1 −2(d −s) (which we already knew a priori) and js = b +1 −2(d −s). 
Then

Ψ∗ ·Ψ
b+1−2(d−s)

↓
b−1−2(d−s)

Ψ
js+1

↓
b+1−2(d−s)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z = Ψ∗ ·Ψ

js+1

↓
b+1−2(d−s)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z

and the claim holds.
Suppose the claim is true for some s −1 � u � d −2, and that jv � b +3 −2(d +
s − 2v) for all s − 1 � v � u + 1. Then by induction, we have

Ψ∗ ·Ψ
b+1−2(d−s)

↓
b−1−2(d−s)

Ψ
js+1

↓
b+1−2(d−s)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z

= Ψ∗ Ψ
js
↓

b+1−2(d−s)
. . . Ψ

ju
↓

b+1+2(d−u)︸ ︷︷ ︸
Ψ

ju+1

↓
b+7−2(d+s−2u)

Ψ
ju+2

↓
b+3−2(d−u)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z

=:Ψ†
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= Ψ∗Ψ†Ψ
ju+1

↓
b+7−2(d+s−2u)

Ψ
ju+2

↓
b+11−2(d+s−2u)

Ψ
b+5−2(d+s−2u)

↓
b+3−2(d−u)

Ψ
ju+3

↓
b+5−2(d−u)

. . .

· Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z since ju+1 � b + 7 − 2(d + s− 2u) by hypothesis

= Ψ∗Ψ†Ψ
ju+1

↓
b+3−2(d−u)

Ψ
ju+2

↓
b+11−2(d+s−2u)

Ψ
ju+3

↓
b+5−2(d−u)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z

and the claim is proved.
3. Next, we look at the final case, i � b − 1, jd � j − 2 and j � b + 5. We have that

(∗) = Ψ
j1
↓

b+3−2d
Ψ

j2
↓

b+5−2d
. . . Ψ

jd−1

↓
b−1

·Ψ
b−3
↑
i
Ψ

j−6
↓

b−1
Ψ

jd
↓

b+1
z.

Once again, we split into subcases.
(a) First suppose i � b + 1 − 2d. Then

(∗) = Ψ
b−1−2d

↑
i

Ψ
j1
↓

b+1−2d
Ψ

j2
↓

b+3−2d
. . . Ψ

jd−1

↓
b−3

Ψ
j−6
↓

b−1
Ψ

jd
↓

b+1
z.

Claim. Suppose for some 0 � u � d − 1 we have j < jd−v + 4(v + 1) for all 
0 � v � u and j � b + 3 + 2v for all 0 � v � u. Then

(∗) = Ψ
b−1−2d

↑
i

Ψ
j1
↓

b+1−2d
Ψ

j2
↓

b+3−2d
. . . Ψ

jd−u−1

↓
b−3−2u

Ψ
j−6−4u

↓
b−1−2u

Ψ
jd−u

↓
b+1−2u

. . . Ψ
jd
↓

b+1
z

and this expression is of length 2(u +1) less than the length of (∗). Furthermore, 
if we take the maximal such u and have u � d − 2 and j � b + 5 + 2u, it is 
reduced. If j = b + 3 + 2u, the expression is equal to 0.

We prove the claim by induction on u. If u = 0, the result follows immediately 
from Lemma 6.4. Now suppose the claim holds for some 0 � u � d − 2, and that 
j < jd−v +4(v+1) for all 0 � v � u +1, but j � jd−u−2 +4(u +3) (if u � d −3). 
Then by induction, we have

(∗) = Ψ
b−1−2d

↑
i

Ψ
j1
↓

b+1−2d
Ψ

j2
↓

b+3−2d
. . . Ψ

jd−u−2

↓
b−5−2u︸ ︷︷ ︸

=:Ψ∗

Ψ
jd−u−1

↓
b−3−2u

Ψ
j−6−4u

↓
b−1−2u

Ψ
jd−u

↓
b+1−2u

. . . Ψ
jd
↓

b+1
z

= Ψ∗Ψ
jd−u−1

↓
j−4−4u

Ψj−6−4uΨj−8−4uΨj−6−4uΨ
j−10−4u

↓
b−3−2u

Ψ
j−8−4u

↓
b−1−2u

Ψ
jd−u

↓
b+1−2u

. . . Ψ
jd
↓

b+1
z

= Ψ∗Ψ
j−10−4u

↓ Ψ
jd−u−1

↓ Ψ
jd−u

↓ . . . Ψ
jd
↓ z,
b−3−2u b−1−2u b+1−2u b+1
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which is the claimed expression. In the induction step, 2 Ψ terms have been 
deleted, which proves the length part of the claim. It is clear that if j < b +5 +2u
then the expression in the claim is 0 and likewise that when u � d − 2 (and 
j � b + 5 + 2u), we have a reduced expression.
Now, let u be maximal under the conditions in the claim. First, suppose that 
u � d − 2. By the claim, we can assume that j � b + 5 + 2u. This implies that 

Ψ
j−2
↓

b+1
has length at least u +2. Similarly, i � b +1 − 2d and u � d − 2 imply that

Ψ
b−1
↑
i

also has length at least u + 2. So by the claim, once (∗) has been written 

in a reduced form, it has length at least 2 more than vT .
But what if u = d − 1? The above claim tells us that

(∗) = Ψ
b−1−2d

↑
i

Ψ
j−2−4d

↓
b+1−2d

vT .

This is zero unless j � b + 3 + 2d, in which case we have a (reduced) longer 
expression than vT , or i � b + 1 − 2d. Note that in the latter case, we in fact 
have i = b + 1 − 2d because of the conditions on the subcase we are looking at. 
Looking at this case, we assume j < b + 3 + 2d, since j � b + 3 + 2d yields an 
expression longer than vT . Under these conditions, we have (∗) = vT .

(b) Finally, suppose that i � b + 3 − 2d. Say i = ks − 2 = b − 1 − 2(d − s) for some 
s � 2. Then

(∗) = Ψ
j1
↓

b+3−2d
. . . Ψ

js−1

↓
b−1−2(d−s)

·Ψ
js
↓

b−1−2(d−s)
Ψ

js+1

↓
b+1−2(d−s)

. . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z.

Claim 1. Suppose we have −1 � u � d − s − 1 with js+v � b + 3 − 2(d − s) + 4v
for all −1 � v � u. Let

Ψ∗ := Ψ
j1
↓

b+3−2d
. . . Ψ

js+u

↓
b+1−2

(
d−(s+u)

).

Then

(∗) = Ψ∗Ψ
js+u+1

↓
b+7−2(d−s−2u)

·Ψ
js+u+2

↓
b+3−2

(
d−(s+u)

)Ψ
js+u+3

↓
b+5−2

(
d−(s+u)

). . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z.

The above claim is proved by a simple but tedious induction, in the spirit of 
previous claims in this proof. Now first suppose we have u = d − s − 1 satisfying 
the conditions in the claim, but also jd � b + 3 + 2(d − s). Then

(∗) = Ψ
j1
↓ . . . Ψ

jd−1

↓ Ψ
jd
↓ Ψ

j−2
↓ z
b+3−2d b−1 b+3+2(d−s) b+1
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=

⎧⎨
⎩

−2T ′ if j = b + 5 + 2(d− s),
T ′ if j = b + 3 + 2(d− s) or j = b + 7 + 2(d− s),
0 otherwise.

Otherwise, take u maximal, satisfying the conditions of Claim 1. We have

(∗) = Ψ∗ ·Ψ
js+u+2

↓
b+3−2

(
d−(s+u)

)Ψ
js+u+3

↓
b+5−2

(
d−(s+u)

). . . Ψ
jd
↓

b−1
Ψ

j−2
↓

b+1
z,

by the claim. Note that for these conditions on u to hold, we have js+u =
b + 3 − 2(d − s) + 4u and js+u+1 = b + 5 − 2(d − s) + 4u.

Claim 2. Let 0 � r � d −s −u −2 be such that jd−v � j−2 −4v for all 0 � v � r. 
Then

(∗) = Ψ∗Ψ
js+u+2

↓
b+3−2

(
d−(s+u)

). . . Ψ
jd−r−1

↓
b−3−2r

Ψ
j−6−4r

↓
b−1−2r

Ψ
jd−r

↓
b+1−2r

Ψ
jd−r+1

↓
b+3−2r

. . . Ψ
jd
↓

b+1
z.

If r is maximal such that jd−v � j−2 −4v for all 0 � v � r and r ≤ d −s −u −3, 
then this expression is reduced.

Again, this claim can be proved by induction as with the previous claims. Note 
that the above term is zero unless j � b + 5 + 2r.
Whenever r � d − s − u − 3, the reduced expression above is longer than vT . To 
see why, note that we have the condition js+u+1 = b + 5 − 2(d − s − 2u) from 
Claim 1. Since ji+1 � ji + 2, this yields jd−r−1 � b + 1 + 2(u − r). Now, we have 
assumed that jd−r−1 < j − 6 − 4r, so we can combine these inequalities to yield 
j � b + 9 + 2(u + r).
We now have enough information to compare lengths. To leave this reduced form, 
we first deleted 2u + 4 Ψ terms from (∗) to arrive at the result from Claim 1. 
Next, we deleted 2r + 2 Ψ terms to arrive at the result of Claim 2. So in total, 
we have deleted 2(r+u +3) =: δ Ψ terms from (∗) to leave a reduced expression.
Now, how many Ψ terms did we append to vT in the definition of (∗)? Call the 

number of terms appended α. Since i = b − 1 − 2(d − s), Ψ
b−1
↑
i

is a product of 

d − s + 1 Ψ terms. Since j � b + 9 + 2(u + r), Ψ
j−2
↓

b+1
has length at least 4 + u + r. 

So, α � d + u + r− s + 5. By the definition of r, we have that d − s � r + u + 2, 
so α � 2(u + r + 3) + 1 > δ, and we are done.
Now suppose r = d − s − u − 2 satisfies the conditions of Claim 2, and we are 
left with a reduced expression. The claim tells us that the reduced expression is

(∗) = Ψ∗Ψ
j+2−4

(
d−(s+u)

)
↓

b+3−2(d−(s+u))
Ψ

js+u+2

↓( ). . . Ψ
jd
↓

b+1
z.
b+5−2 d−(s+u)
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Now, using the fact that js+u = b + 3 − 2(d − s) + 4u, we see that for this 
expression to be reduced we have j � b + 3 + 2(d − s). Now, arguing as above, 

we have δ = 2(r+u +3) = 2(d − s +1), the length of Ψ
b−1
↑
i

is once again d − s +1

and the length of Ψ
j−2
↓

b+1
is at least d − s + 1. Hence α � δ, with equality precisely 

when j = b + 3 + 2(d − s), in which case we have (∗) = vT .
Now suppose r = d − s − u − 2 satisfies the conditions of Claim 2, but we are 
not left with a reduced expression. Then

(∗) = Ψ∗Ψ
j+2−4

(
d−(s+u)

)
↓

b+3−2
(
d−(s+u)

)Ψ
js+u+2

↓
b+5−2

(
d−(s+u)

). . . Ψ
jd
↓

b+1︸ ︷︷ ︸
=:Ψ∗∗

z

which is zero unless j � b + 1 + 2(d − (s + u)), and we have the following:

Claim 3. Let −1 � x � s +u − 1 be such that js+u−v � j + 2 − 4(d + v− (s +u))
for all −1 � v � x. Then

(∗) = Ψ
j1
↓

b+3−2d
. . . Ψ

js+u−x−1

↓
b−1−2

(
d+x−(s+u)

)Ψ
j−2−4

(
d+x−(s+u)

)
↓

b+1−2
(
d+x−(s+u)

)Ψ
js+u−x

↓
b+3−2

(
d+x−(s+u)

). . .

·Ψ
js+u

↓
b+3−2

(
d−(s+u)

)Ψ∗∗z.

Note that if x � s +u − 2, this term is zero unless j � b +3 +2(d +x − (s +u)).

Take x to be the maximal such that the conditions in Claim 3 are met. First, 
suppose x � s +u − 2. Then js+u−x � j +2 − 4(d +x − (s +u)) and js+u−x−1 <

j − 2 − 4(d + x − (s + u)). When x � u − 1, we have our assumption in using 
Claim 1 that js+u−x−1 � b −1 −2(d −s) +4(u −x). Comparing these inequalities 
yields j � b + 3 + 2(d − s).
Similarly if x � u, js+u−x−1 � b − 1 − 2(d +x − (s +u)) can be read off from the 
expression in Claim 3. But this yields j � b +3 +2((d −s) +(x −u)) � b +3 +2(d −s). 
Now in either case,

b + 3 − 2(d− s) + 4u = js+u by the comment after Claim 1,
� j + 2 − 4

(
d− (s + u)

)
by the conditions in Claim 3,

� b + 5 − 2(d− s) + 4u.

We have a contradiction, and so if js+u � j+2 −4(d −(s +u)) but j1 < j+6 −4d,
we must have (∗) = 0.
Now suppose x = s + u − 1. Then we have j � b − 1 + 2d, or else (∗) = 0 and 
we’re done. So
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b + 3 − 2d + 2s + 4u = js+u by the comment after Claim 1,

� j + 2 − 4
(
d− (s + u)

)
by the conditions in Claim 3,

� b + 1 − 2d + 4(s + u).

This implies s = 1, and so i = b + 1 − 2d. But this breaks the initial conditions 
of the subcase we are in, so we again have a contradiction. So in fact we never 
get terms that look like the expression in Claim 3; Ψ∗ remains intact in the final 
reduced expression for (∗), if it is non-zero.

If we collect the cases where (∗) is equal to a scalar multiple of vT , we get the following 
list:

(∗) = vT if
• i = b + 1, j = b + 5, d > 0 – from case 1;
• b + 3 − 2d � i � b − 1, j = 2b + 6 − i, jd = 2b + 2 − i, and jv � j − 4 − 4(d − v) for 

all v – from case 2(b);
• b + 3 − 2d � i � b − 1, j = 2b + 6 − i and jv � j − 4 − 4(d − v) for all v – from 

case 3(b);
• i = b − 1, j = b + 3, d > 0 – from case 1;
• i = b + 1 − 2d, j = b + 1 + 2d � b + 5 and jv � j − 2 − 4(d − v) for all v – from 

case 3(a);
• b + 3 − 2d � i, j = 2b + 2 − i � b + 5, jd � j − 2 and jv � j − 2 − 4(d − v) for 

all v – from case 3(b);
• b + 3 − 2d � i, j = 2b + 2 − i � b + 5, jd � j − 2 and jv � j − 4(d − v) for all v – 

from case 3(b).

These conditions can be written compactly as the first and second conditions in the 
statement of the proposition.

(∗) = −2vT if
• i = b + 1, j = b + 3, d > 0 – from case 1;
• b + 3 − 2d � i � b − 1, j = 2b + 4 − i � b + 5, and jv � j − 2 − 4(d − v) for all v – 

from case 3(b).

These two conditions can be written compactly as the final condition in the statement 
of the proposition. �

The above result immediately leads to the following crucial fact.

Corollary 6.6. Order D so that vU comes after vT whenever r(U) > r(T ). With respect 
to this ordering, the action of f on e(iλ)Sλ is lower triangular. In particular, for each 
T ∈ Dom(λ), the coefficient of vT in f(vT ) is an eigenvalue of f .
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Proposition 6.7. f has the eigenvalues

−d

2
(n− 2d + 1) for d = 0, 1, . . . , b/2.

Proof. Fix some d ∈ {0, 1, . . . , b/2}. Let

vT = Ψ
n−2d
↓

b+3−2d
. . . Ψ

n−4
↓

b−1
Ψ

n−2
↓

b+1
z.

Using the three bullet points in Proposition 6.5, we will compute the eigenvalue −d
2 (n −

2d + 1) as the coefficient of vT in f(vT ). First, note that by choice of T the inequality 
on jd for each bullet point is the strongest. So to check when the family of inequalities 
at the end of each bullet point holds, it suffices to only verify the inequality on jd.

If i + j = 2b + 6 and i � b + 3 − 2d, then we claim that the inequalities in the first 
bullet point are always satisfied by vT . For this, we need jd � 2b + 2 − i. Using that 
d � b/2 and n > 2b we also get that 2b + 2 − i � b − 1 + 2d � 2b − 1 � n − 2. So the 
inequalities always hold in the case of the first bullet point.

Now, if i + j = 2b + 2 and i � b + 1 − 2d, we claim that the inequalities in the second 
bullet point are always satisfied by vT . To see this, we must show that jd � 2b − i. We 
have 2b − i � b − 1 + 2d � 2b − 1 � n − 2 and so the inequalities always hold in the case 
of the second bullet point.

Finally, i + j = 2b + 4 and i � b + 3 − 2d, then we claim that the inequalities in 
the third bullet point are always satisfied by vT . We need jd � 2b + 2 − i but have 
2b + 2 − i � b − 1 + 2d � 2b − 1 � n − 2 and we are done.

So now we only need to verify which pairs (i, j) satisfy the first two conditions in each 
bullet point. For the first bullet point, we have the pairs (b + 3 − 2d, b + 3 + 2d), (b +
5 − 2d, b + 1 + 2d), . . . , (b + 1, b + 5). For the second, we have the pairs (b + 1 − 2d, b +
1 + 2d), (b + 3 − 2d, b − 1 − 2d), . . . , (b − 1, b + 3). For the third, we have the pairs 
(b + 3 − 2d, b + 1 + 2d), (b + 5 − 2d, b − 1 + 2d), . . . , (b + 1, b + 3).

Recall that the coefficient of Ψ
b−1
↑
i
Ψ

j−2
↓

b+1
in f(z) is i−1

2 · n+2−j
2 . Hence the coefficient 

of vT in f(vT ) is

1
4

d−1∑
r=0

(b− 2r)(a− 3 − 2r) + (b− 2 − 2r)(a− 1 − 2r) − 2(b− 2r)(a− 1 − 2r)

= 1
4

d−1∑
r=0

8r − 2(n− 1)

= −1
2d(n− 1) + 2

d−1∑
r=0

r

= −d (n− 2d + 1). �
2
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Remark. The sequence of eigenvalues given above is

0, − (n− 1)
2 , −(n− 3), −3

2(n− 5), . . . , − b

4(a + 1).

If we write a = 2r + 1 and b = 2s then this sequence can be rewritten as

0, −(r + s), −2(r + s− 1), −3(r + s− 2), . . . , −s(r + 1).

Theorem 6.8. Suppose charF �= 2. Then S(a,1b) is decomposable if either b � 4 or b = 2
with charF � n−1

2 .

Proof. By the remark after Proposition 6.2, it suffices to show that f has at least two 
distinct eigenvalues. When s � 2, 0, − (n−1)

2 and −(n − 3) are three eigenvalues of f ; if 
S(a,1b) were indecomposable, these would be equal. Since p �= 2, this is impossible, and 
we have the desired result.

When b = 2 and charF � n−1
2 , we have the distinct eigenvalues 0 and − (n−1)

2 and we 
are done. �

It remains to resolve the case a = 2r + 1, b = 2 when charF | n−1
2 . We have

f(z) = r · vT3,b+3 + (r − 1) · vT3,b+5 + · · · + vT3,n =
r∑

c=1
c · Ψ

3+2(r−c)
↓
3

z.

When b = 2 and charF | n−1
2 , we will prove that Sλ is indecomposable by showing 

that EndH (Sλ) has no non-trivial idempotents.

Lemma 6.9. Suppose a is odd. Then {I, f} is a basis of EndH (S(a,12)), where I is the 
identity map on S(a,12).

Proof. Suppose we have g ∈ S(a,12) \ 〈I, f〉F. Since the coefficient of vT3,n in f is 1, we 
can add multiples of I and f to assume without loss of generality that

g(z) =
(n−3)/2∑

j=2
αjvT3,2j+1 =

(n−3)/2∑
j=2

αjΨ
2j−1
↓
3

z.

We will show that applying the relations ψn−2kg(z) = 0 for k = 1, 2, . . . , (n − 5)/2
yields α(n−2k−1)/2 = 0. It then follows that g is the zero map, a contradiction.

Suppose, by induction on k, we have

g(z) =
(n−2k−1)/2∑

αjΨ
2j−1
↓
3

z.

j=2
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Then, acting on g(z) by ψn−2k yields α(n−2k−1)/2ψn−2kΨ
n−2k−2

↓
3

z = 0 and we are 

done. �
In order to find idempotents, we would like to know how to compose elements of our 

basis. This amounts to the following lemma.

Lemma 6.10. Let a = 2r + 1 and b = 2. Then f2(z) = −(r + 1)f(z).

Proof. Notice that Ψ3 ·Ψ
3+2(r−c)

↓
3

z = 0 for all c � r − 2. So

f2(z) =
r∑

c=1
c ·Ψ

3+2(r−c)
↓
3

f(z)

=
r∑

c=1
c ·Ψ

3+2(r−c)
↓
3

(r − 1Ψ5Ψ3z + rΨ3z)

=
r∑

c=1
c ·Ψ

3+2(r−c)
↓
3

(
−(r + 1)z

)

= −(r + 1)f(z). �
Lemma 6.11. Suppose a = 2r + 1 and charF | n−1

2 . Then the only idempotents in 
EndH (S(a,12)) are 0 and I, and hence S(a,12) is indecomposable.

Proof. Let α, β ∈ F. Using Lemma 6.10, we have f2(z) = 0 and therefore

(αI + βf)2 = α2I + 2αβf.

So αI + βf is an idempotent if and only α2 = α and 2αβ = β.
Whether α = 0 or α = 1, we must have β = 0. The result follows. �
With the aid of Murphy’s result in [8], we have now completely determined decompos-

ability of the Specht modules S(a,1b). We summarise our result in the following theorem.

Theorem 6.12. Suppose charF �= 2. Then S(a,1b) is indecomposable if and only if n is 
even, or b = 2 or 3 and charF | �a

2 �.
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