期刊论文详细信息
JOURNAL OF ALGEBRA 卷:543
Characterizing finite length local cohomology in terms of bounds on Koszul cohomology
Article
Klein, Patricia1 
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词: Koszul cohomology;    Local cohomology;    Hilbert-Samuel multiplicities;    Lech's inequality;   
DOI  :  10.1016/j.jalgebra.2019.09.026
来源: Elsevier
PDF
【 摘 要 】

Let (R, m, kappa) be a local ring. We give a characterization of R-modules M whose local cohomology is finite length up to some index in terms of asymptotic vanishing of Koszul cohomology on parameter ideals up to the same index. In particular, we show that a quasi-unmixed module M is asymptotically Cohen-Macaulay if and only if M is Cohen-Macaulay on the punctured spectrum if and only if sup{l(H-i(f(1), . . . ,f(d); M)) vertical bar root f(1), . . . ,f(d) = m, i < d} < infinity for d = dim(M) = dim(R). (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_09_026.pdf 495KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次