期刊论文详细信息
JOURNAL OF PURE AND APPLIED ALGEBRA 卷:224
A prime-characteristic analogue of a theorem of Hartshorne-Polini
Article
Switala, Nicholas1  Zhang, Wenliang1 
[1] Univ Illinois, Dept Math Stat & Comp Sci, 322 SEO M-C 249,851 S Morgan St, Chicago, IL 60607 USA
关键词: Mathis duality;    Local cohomology;    Frobenius modules;    F-modules;   
DOI  :  10.1016/j.jpaa.2020.106386
来源: Elsevier
PDF
【 摘 要 】

Let R be an F-finite Noetherian regular ring containing an algebraically closed field k of positive characteristic, and let M be an F-finite F-module over R in the sense of Lyubeznik (for example, any local cohomology module of R). We prove that the F-p-dimension of the space of F-module morphisms M -> E(R/m) (where m is any maximal ideal of R and E(R/m) is the F-injective hull of R/m) is equal to the k-dimension of the Frobenius stable part of Hom(R)(M, E(R/m)). This is a positivecharacteristic analogue of a recent result of Hartshorne and Polini for holonomic D-modules in characteristic zero. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpaa_2020_106386.pdf 363KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次