期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:478 |
Rank 3 arithmetically Cohen-Macaulay bundles over hypersurfaces | |
Article | |
Tripathi, Amit1  | |
[1] HBNI, Sch Math Sci, Natl Inst Sci Educ & Res, Bhubaneswar, India | |
关键词: Vector bundles; Hypersurfaces; Arithmetically Cohen-Macaulay; | |
DOI : 10.1016/j.jalgebra.2017.01.014 | |
来源: Elsevier | |
【 摘 要 】
Let X be a smooth projective hypersurface of dimension >= 5 and let E be an arithmetically Cohen-Macaulay bundle on X of any rank. We prove that E splits as a direct sum of line bundles if and only if H-*(i)(X, boolean AND E-2) = 0 for i = 1,2,3,4. As a corollary this result proves a conjecture of Buchweitz, Greuel and Schreyer for the case of rank 3 arithmetically Cohen Macaulay bundles. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2017_01_014.pdf | 303KB | download |