期刊论文详细信息
JOURNAL OF ALGEBRA 卷:478
Rank 3 arithmetically Cohen-Macaulay bundles over hypersurfaces
Article
Tripathi, Amit1 
[1] HBNI, Sch Math Sci, Natl Inst Sci Educ & Res, Bhubaneswar, India
关键词: Vector bundles;    Hypersurfaces;    Arithmetically Cohen-Macaulay;   
DOI  :  10.1016/j.jalgebra.2017.01.014
来源: Elsevier
PDF
【 摘 要 】

Let X be a smooth projective hypersurface of dimension >= 5 and let E be an arithmetically Cohen-Macaulay bundle on X of any rank. We prove that E splits as a direct sum of line bundles if and only if H-*(i)(X, boolean AND E-2) = 0 for i = 1,2,3,4. As a corollary this result proves a conjecture of Buchweitz, Greuel and Schreyer for the case of rank 3 arithmetically Cohen Macaulay bundles. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_01_014.pdf 303KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次