期刊论文详细信息
JOURNAL OF ALGEBRA 卷:542
Polynomial extensions of modules with the quasi-Baer property
Article
Dana, P. Amirzadeh1  Moussavi, A.1 
[1] Tarbiat Modares Univ, Dept Math Sci, Tehran, Iran
关键词: Baer rings and modules;    Quasi-Baer rings and modules;    p.q.-Baer modules;    Extending and FI-extending modules;    Endomorphism rings;    Annihilators;    Semicentral Idempotents;   
DOI  :  10.1016/j.jalgebra.2019.09.007
来源: Elsevier
PDF
【 摘 要 】

In this paper it is shown that, for a module M over a ring R with S = End(R)(M), the endomorphism ring of the R[x]-module M[x] is isomorphic to a subring of S[[x]]. Also the endomorphism ring of the Rp[x]]-module M[[x]]( )is isomorphic to S[[x]]. As a consequence, we show that for a module M-R and an arbitrary nonempty set of not necessarily commuting indeterminates X, M-R is quasi-Baer if and only if M[X](R[x] )is quasi-Baer if and only if M[[X]](R[[x]]) is quasi-Baer if and only if M[x](R[x]) is quasi-Baer if and only if M[[x]](R[[x]]) is quasi-Baer. Moreover, a module M-R with IFP, is Baer if and only if M[x](R[x]) is Baer if and only if M[[x]](R)([[)(x)(]]) is Baer. It is also shown that, when MR is a finitely generated module, and every semicentral idempotent in S is central, then M[[X]](R[[X]]) is endo-p.q.-Baer if and only if M[[x]](R[[x]]) is endo-p.q.-Baer if and only if M-R is endo-p.q.-Baer and every countable family of fully invariant direct summand of M has a generalized countable join. Our results extend several existing results. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2019_09_007.pdf 419KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次