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1. Introduction

Throughout this paper R denotes a ring with unity and M is a unital right R-module. 
The endomorphism ring of M is denoted by S = EndR(M). Thus M can be viewed as 
a left S-right R-bimodule. Recall that a ring R is (quasi-)Baer if the right annihilator 
of every nonempty subset (resp. right ideal) of R is generated (as a right ideal) by an 
idempotent of R. These definitions are left-right symmetric. In [9] Kaplansky introduced 
Baer rings to abstract various properties of AW ∗-algebras, von Neumann algebras, and 
complete ∗-regular rings.

In [7] Clark defined quasi-Baer rings, and used them to characterize when a finite di-
mensional algebra with unity over an algebraically closed field is isomorphic to a twisted 
matrix units semigroup algebra. Large classes of rings satisfy the Baer property - ex-
amples include right self-injective von Neumann regular rings, von Neumann algebras, 
and the endomorphisms rings of semisimple modules. Examples of quasi-Baer rings also 
include large classes, such as all prime rings and rings of matrices over Baer rings.

In [14] Pollingher and Zaks have shown that the class of quasi-Baer rings is closed 
under n × n matrix rings and under n × n upper (resp. lower) triangular matrix rings. 
Furthermore, it can be followed from their results that the quasi-Baer condition is a 
Morita invariant property. Thus an n × n (n > 1) matrix ring over a non-Prüfer com-
mutative domain is a prime PI quasi-Baer ring which is not Baer ([9], p. 17). Also an 
n × n (n > 1) upper triangular matrix ring over a domain which is not a division ring is 
quasi-Baer but not Baer ([9], p. 16). Thus the class of quasi-Baer rings seems to behave 
better than the class of Baer rings under various extensions.

According to Birkenmeier, Kim and Park [5], a ring is said to be right (resp. left) 
principally quasi-Baer if the right (resp. left) annihilator of a principal right (resp. left) 
ideal is generated (as a right (resp. left) ideal) by an idempotent. This definition is not 
left-right symmetric. The class of p.q.-Baer rings includes all biregular rings and all 
quasi-Baer rings and is closed under direct products and Morita invariance.

Birkenmeier, Kim and Park [6] have shown that a number of polynomial extensions 
such as formal power series, Ore extensions of endomorphism type, and Laurent series 
do not preserve the Baer condition. However all is not lost for, in spite of these examples, 
some “Baerness” remains. They have also shown that for many polynomial extensions 
(including formal power series, Laurent polynomials, and Laurent series), a ring R is 
quasi-Baer if and only if the polynomial extension over R is quasi-Baer.

In [4] Birkenmeier, Kim and Park have shown that R is a right p.q.-Baer ring if and 
only if R[x] is a right p.q.-Baer ring. Moreover, there is a p.q.-Baer ring R such that 
the ring R[[x]] is not p.q.-Baer. In [12], Liu has proved that R is right p.q.-Baer if and 
only if R[[x]] is right p.q.-Baer and any countable family of idempotents has generalized 
join, when all the left semicentral idempotents are central. For a right p.q.-Baer ring, 
the condition that left semicentral idempotents are central is equivalent to assume R is 
semiprime, ([5], Proposition 1.17]). Huang [8] showed that, in Liu’s result, the condition 
requiring all left semicentral idempotents being central, is redundant.



232 P. Amirzadeh Dana, A. Moussavi / Journal of Algebra 542 (2020) 230–248
In 2004, the notion of Baer rings was placed in the general module-theoretic setting 
by Rizvi and Roman utilizing the endomorphism ring of the module for the first time 
[15]. It was shown that many results for Baer rings can be proved in the general setting 
of modules including a type theoretic decomposition similar to the one provided for 
Baer rings by Kaplansky in [9]. Considering an R-module M as an (S, R)-bimodule 
where S = EndR(M), a module M is said to be Baer if the right annihilator in M
of any nonempty subset of S is generated by an idempotent of S (see also [16], [17], 
[18]). Some examples of Baer modules include Baer rings R viewed as right R-modules, 
semisimple modules, nonsingular (K-nonsingular) extending modules, free modules of 
countable rank over a PID. The module MR is said to be a quasi-Baer module if the 
right annihilator in M of any two-sided ideal of S = EndR(M) is a direct summand of 
M . It is easy to see that, when M = RR, the two notions coincide with the existing 
definitions of Baer and quasi-Baer rings, respectively.

In [1] we introduced the notion of endo-principally quasi-Baer modules as a general-
ization of quasi-Baer modules. Let M be a right R-module and S = EndR(M), M is 
called an endo-principally quasi-Baer (or simply, endo-p.q.-Baer) module if, for every 
m ∈ M , lS(Sm) = Se, for some e2 = e ∈ S.

Alternative definitions of Baer (quasi-Baer) modules appear in [10] by Lee and Zhou. 
Extending the notion of a reduced ring (for which a2 = 0 implies a = 0, for each a ∈ R), 
they introduced the notion of a reduced module. By their definition, a right R-module 
M is a reduced module if, for every m ∈ M and a ∈ R, ma = 0 implies mR ∩Ma = 0. 
Knowing that reduced rings have been used to obtain results on various annihilator con-
ditions, such as Baer and quasi-Baer properties of the (Laurent) polynomial extensions 
and (Laurent) power series extensions of rings, they extended some of the results from 
reduced rings to reduced modules. Extending the notion of Baer and quasi-Baer rings, 
Lee and Zhou define an R-module M to be Baer (resp. quasi-Baer) if rR(X) = eR, for 
every subset X of M (resp. for every submodule X of M), where e2 = e ∈ R.

In [10], the authors prove that a module MR is quasi-Baer if and only if M [x]R[x]
is quasi-Baer if and only if M [[x]]R[[x]] is quasi-Baer if and only if M [x, x−1]R[x,x−1] is 
quasi-Baer if and only if M [[x, x−1]]R[[x,x−1]] is quasi-Baer.

Throughout this paper, Baer, quasi-Baer and endo-p.q.-Baer modules are applied 
based on their definitions in [15] and [1], respectively. We first determine endomorphism 
rings of polynomial and power series extensions of any R-module M and then we char-
acterize the Baer and quasi-Baer properties of these extensions, in terms of those of M .

Let M be an R-module, S = EndR(M), X an arbitrary nonempty set of not nec-
essarily commuting indeterminates and A be the set of all monomials in R[X]. Note 
that we suppose that every element of R commutes with every indeterminate. We define 
R-modules M [x] and M [[x]] as:

M [x] =
{∑r

i=0 mix
i : r ≥ 0, mi ∈ M

}
, M [[x]] =

{∑∞
i=0 mix

i : mi ∈ M

}
. Then M [x]

is a right R[x]-module and M [[x]] is a right R[[x]]-module, by usual scalar products 
(clearly every element of R commutes with x).
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In particular M [x] is a left S[x]-module by the following:
for every p[x] =

∑r
i=0 mix

i ∈ M [x] and f [x] =
∑s

j=0 fjx
j ∈ S[x],

f [x]p[x] =
s∑

j=0

r∑
i=0

fj(mi)xi+j .

Similarly, M [[x]] is a left S[[x]]-module.
We define M [X] as the set of all elements of the form 

∑
α∈A mαα such that, for every 

α ∈ A, mα ∈ M and there are only finitely many α ∈ A, in which mα �= 0. M [[X]]
is the set of all elements of the form 

∑
α∈A mαα. By these definitions M [X] is a right 

R[X]-module by the following:
for every 

∑
α∈A mαα ∈ M [X] and 

∑
β∈A rββ ∈ R[X],

(
∑
α∈A

mαα)(
∑
β∈A

rββ) =
∑
α∈A

∑
β∈A

mαrβαβ.

Similarly, M [[X]] is a right R[[X]]-module. In particular, every element of S[[X]] can be 
represented as 

∑
β∈A fββ in which, for some β ∈ A, fβ ∈ S. By these notations M [[X]]

is a left S[[X]]-module, by the following scalar multiplication:

(
∑
β∈A

fββ)(
∑
α∈A

mαα) =
∑
β∈A

∑
α∈A

fβ(mα)βα.

In this paper we prove that, the endomorphism ring of the module M [x]R[x] is isomor-
phic to a subring of S[[x]] containing power series 

∑∞
i=0 fix

i in which, for every m ∈ M , 
there are only finitely many indices i ≥ 0 such that fi(m) �= 0. Obviously, this ring 
contains S[x]. We also show that the endomorphism ring of the module M [[x]]R[[x]] is 
isomorphic to S[[x]]. As a consequence, we show that, for a module MR and an arbitrary 
nonempty set of not necessarily commuting indeterminates X, MR is quasi-Baer if and 
only if M [X]R[X] is quasi-Baer if and only if M [[X]]R[[X]] is quasi-Baer if and only if 
M [x]R[x] is quasi-Baer if and only if M [[x]]R[[x]] is quasi-Baer. It is also shown that, 
M [[x]] is an endo-p.q.-Baer right R[[x]]-module if and only if MR is an endo-p.q.-Baer 
module and, for every countable subset N = {m0, m1, . . .} of M , lS(

∑
i=0,1,... Smi) is 

generated by an idempotent in S, as a left ideal of S. As a corollary we show that, the 
power series ring R[[x]] is left p.q.-Baer if and only if R is left p.q.-Baer and the left 
annihilator of every countably generated left ideal of R is generated by an idempotent. 
This result shows that in the Liu’s result [12, Theorem 3], the semiprime condition is 
redundant. Our results also extend several other existing results.

2. Polynomial extensions of modules with Baer property

The notations N ≤ M , N ≤
⊕

M or N � M mean that N is a submodule, a direct 
summand of M or a fully invariant submodule (i.e. ∀ϕ ∈ EndR(M), ϕ(N) ⊆ N). We 
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also denote lS(N) = {ϕ ∈ S|ϕN = 0} for N ≤ M . I � S means I is an ideal in S and 
we denote rM (I) = {m ∈ M |Im = 0} and rS(I) = {ϕ ∈ S|Iϕ = 0}.

According to [3], an idempotent e ∈ R is called right (left) semicentral, if for each 
r ∈ R, er = ere (resp. re = ere). First, we recall some of the basic properties of 
idempotents, where Sl(R) and Sr(R) denote the set of left semicentral idempotents and 
right semicentral idempotents of R, respectively.

Lemma 2.1 ([5], Lemma 1.1). For an idempotent e ∈ R, the following conditions are 
equivalent:

(i) e ∈ Sl(R);
(ii) 1 − e ∈ Sr(R);

(iii) (1 − e)Re = 0;
(iv) eR is an ideal of R;
(v) R(1 − e) is an ideal of R;

(vi) eR(1 − e) is an ideal of R and eR = eR(1 − e) 
⊕

Re, as a direct sum of left ideals.

According to Liu [12], a countable family of idempotents E = {e0, e1, . . .} of R is said 
to have a generalized join e if there exists e2 = e ∈ R such that

(1) eiR(1 − e) = 0;
(2) If d is an idempotent and eiR(1 − d) = 0 then eR(1 − d) = 0.

By Huang [8], a countable subset E = {e0, e1, . . .} of Sr(R) has a generalized countable 
join e if there exists e ∈ Sr(R) such that, given a ∈ R:

(1) eie = ei, for all positive integer i;
(2) eia = ei, for all positive integer i, then ea = e.

Since Baer and quasi-Baer modules are defined by exploring the connections between a 
module M and its endomorphism ring, we investigate the structure of the endomorphism 
rings of M [x]R[x] and M [[x]]R[[x]].

Proposition 2.2. Let M be an R-module with S = EndR(M) and consider the modules 
M [x]R[x] and M [[x]]R[[x]]. Then

(1) Every endomorphism of M [x]R[x] has a representation as a power series in S[[x]].
(2) Every endomorphism of M [[x]]R[[x]] has a representation as a power series in S[[x]].

Proof. (1) For every ϕ[x] ∈ EndR[x](M [x]) and m ∈ M , we will have ϕ[x](m) ∈ M [x]. 
Take ϕ[x](m) = m0 + m1x + m2x

2 + . . . + mtx
t. Now, for every i ≥ 0, define the map 

fi : M → M as fi(m) = mi. Since ϕ[x] ∈ EndR[x](M [x]), for every i, fi is a well defined 
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endomorphism of M and so fi ∈ S. Hence, for every m ∈ M , ϕ[x](m) =
∑∞

i=0 fi(m)xi. 
Clearly, for every m ∈ M , there are only finitely many indices i such that fi(m) �= 0. 
By a routine computation, it is easy to show that, for every 

∑p
j=0 njx

j ∈ M [x] and 
ϕ[x] ∈ EndR[x](M [x]), we have

ϕ[x](
p∑

j=0
njx

j) =
∞∑
k=0

(
∑

i+j=k

fi(nj))xk = (
∞∑
i=0

fix
i)(

p∑
j=0

njx
j).

Therefore, every ϕ[x] ∈ EndR[x](M [x]) is represented by 
∑∞

i=0 fix
i where fi ∈ S and, 

for every m ∈ M , there are only finitely many indices i ≥ 0 such that fi(m) �= 0.
(2) For every ϕ[x] ∈ EndR[[x]](M [[x]]) and m ∈ M , we will have ϕ[x](m) ∈ M [[x]]. 

Take ϕ[x](m) = m0+m1x +m2x
2+. . .. Now, for every i ≥ 0, define the map fi : M → M

as fi(m) = mi. Since ϕ[x] ∈ EndR[[x]](M [[x]]), for every i, fi is a well defined endomor-
phism of M . So, for every i, fi ∈ S and, for every m ∈ M , ϕ[x](m) =

∑∞
i=0 fi(m)xi. 

By a routine computation, we can show that, for every 
∑∞

j=0 njx
j ∈ M [[x]] and 

ϕ[x] ∈ EndR[[x]](M [[x]]), we have

ϕ[x](
∞∑
j=0

njx
j) =

∞∑
k=0

(
∑

i+j=k

fi(nj))xk = (
∞∑
i=0

fix
i)(

∞∑
j=0

njx
j).

Therefore, every ϕ[x] ∈ EndR[[x]](M [[x]]) is represented by 
∑∞

i=0 fix
i. �

In the next theorem we characterize the structure of endomorphism rings of the mod-
ules M [x]R[x] and M [[x]]R[[x]].

Theorem 2.3. Let M be an R-module and S = EndR(M). Then

(1) the endomorphism ring of the module M [x]R[x] is isomorphic to a subring of S[[x]]
containing power series 

∑∞
i=0 fix

i in which, for every m ∈ M , there are only finitely 
many indices i such that fi(m) �= 0. Moreover, this ring contains S[x].

(2) the endomorphism ring of the module M [[x]]R[[x]] is isomorphic to S[[x]].

Proof. (1) By Proposition 2.2, every ϕ[x] ∈ EndR[x](M [x]) is represented by a power 
series 

∑∞
i=0 fix

i ∈ S[[x]] in which, for every m ∈ M , there are only finitely many indices i
such that fi(m) �= 0. Conversely, consider 

∑∞
i=0 fix

i ∈ S[[x]] in which, for every m ∈ M , 
there are only finitely many indices i ≥ 0 such that fi(m) �= 0. Now define ϕ[x] :
M [x]R[x] → M [x]R[x], with ϕ[x](p[x]) =

∑∞
t=0(

∑
i+j=t fi(mj))xt, for p[x] = m0 +m1x +

. . . + mtx
t. Then, it is easy to check that, ϕ is well-defined and ϕ[x] ∈ EndR[x](M [x]). 

Define S as the set of all 
∑∞

i=0 fix
i ∈ S[[x]] in which, for every m ∈ M , there are only 

finitely many indices i such that fi(m) �= 0. Clearly, S is a subring of S[[x]]. Now, define 
g : EndR[x](M [x]) → S with, g(ϕ[x]) =

∑∞
i=0 fix

i, for every ϕ[x] ∈ EndR[x](M [x]). 
Then by a routine computation, g is a well-defined group isomorphism. Now, let ϕ[x]
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and ψ[x] be two arbitrary elements of EndR[x](M [x]) with g(ϕ[x]) =
∑∞

i=0 fix
i and 

g(ψ[x]) =
∑∞

i=0 hix
i. Then, for every p[x] = m0 + m1x + . . . + mtx

t ∈ M [x],

(ψ[x]ϕ[x])(p[x]) = ψ[x](ϕ[x](p[x])) = ψ(
∞∑
t=0

(
∑

i+j=t

fimj)xt)

=
∞∑
t=0

(
∑

(i+j)+k=t

hk(fimj))xt =
∞∑
t=0

(
∑

(i+k)+j=t

(hkfi)mj)xt

=
∞∑
t=0

(
∑

i+j=t

(g(ψ[x])g(ϕ[x]))imj)xt = (g(ψ[x])g(ϕ[x]))(p[x]).

Hence, for every ϕ[x], ψ[x] ∈ EndR[x](M [x]), g(ψ[x]ϕ[x]) = g(ψ[x])g(ϕ[x]). Thus g is a 
ring isomorphism and so EndR[x](M [x]) is isomorphic to a subring of S[[x]] containing 
power series 

∑∞
i=0 fix

i such that, for every m ∈ M , there are only finitely many indices 
i ≥ 0 such that fi(m) �= 0. Clearly, this ring contains S[x].

(2) By Proposition 2.3, every ϕ ∈ EndR[[x]](M [[x]]) can be represented by a power 
series 

∑∞
i=0 fix

i ∈ S[[x]]. Conversely, consider power series 
∑∞

i=0 fix
i ∈ S[[x]]. Now we 

define a map ϕ[x] : M [[x]]R[[x]] → M [[x]]R[[x]], with ϕ[x](p[x]) =
∑∞

t=0(
∑

i+j=t fimj)xt, 
for p[x] = m0+m1x +. . . ∈ M [[x]]. Then, it is easy to check that, ϕ is well-defined and ϕ ∈
EndR[[x]](M [[x]]). Now, define g : EndR[[x]](M [[x]]) → S[[x]], with g(ϕ[x]) =

∑∞
i=0 fix

i, 
for every ϕ[x] ∈ EndR[[x]](M [[x]]). Clearly g is surjective and similar to (1), we can show 
that g is a ring monomorphism. So EndR[[x]](M [[x]]) is isomorphic to S[[x]]. �
Example 2.4. Consider Q as a right Z-module. Then EndZ(Q) � Q and so, by Theo-
rem 2.3, we will have:

EndZ[[x]](Q[[x]]) � Q[[x]].

Example 2.5. Let R be a ring and consider 
⊕∞

1 R as a right 
∏∞

1 R-module. Then, 
obviously End(

∏∞
1 R)(

⊕∞
1 R) �

∏∞
1 R and hence, by Theorem 2.3, we will have:

End(
∏∞

1 R)[[x]]((
∞⊕
1

R)[[x]]) �
∞∏
1

R[[x]].

Proposition 2.6. Let M be an R-module with S = EndR(M) and X an arbitrary 
nonempty set of not necessarily commuting indeterminates. Consider the modules 
M [X]R[X] and M [[X]]R[[X]]. Then

(1) every endomorphism of M [X]R[X] has a representation as a power series in S[[X]].
(2) every endomorphism of M [[X]]R[[X]] has a representation as a power series in S[[X]].
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Proof. (1) For every ϕ ∈ EndR[X](M [X]) and m ∈ M , obviously ϕ(m) ∈ M [X]. Define 
A as the set of all monomials in R[X] and take ϕ(m) =

∑
α∈A mαα in which there 

are only finitely many indices α such that mα �= 0. For every α ∈ A, define the map 
fα : M → M as fα(m) = mα. Since ϕ ∈ EndR[x](M [x]), for every α, fα is a well 
defined endomorphism of M . So, for every α, fα ∈ S and, for every m ∈ M , ϕ(m) =∑

α∈A fα(m)α. Clearly, for every m ∈ M , there are only finitely many α such that 
fα(m) �= 0. By a routine computation, it is easy to show that, for every 

∑
β∈A nββ ∈

M [X] and ϕ ∈ EndR[X](M [X]), we have

ϕ(
∑
β∈A

nββ) =
∑
β∈A

ϕ(nβ)β =
∑
β∈A

∑
α∈A

fα(nβ)αβ = (
∑
α∈A

fαα)(
∑
β∈A

nββ).

Therefore, every ϕ ∈ EndR[X](M [X]) is represented by 
∑

α∈A fαα, where fα ∈ S and, 
for every m ∈ M , there are only finitely many indices α ∈ A such that fα(m) �= 0.

(2) The proof is similar to that of (1). �
Corollary 2.7. Let M be an R-module with S = EndR(M), X an arbitrary nonempty set 
of not necessarily commuting indeterminates and A be the set of all monomials in R[X]. 
Then

(1) the endomorphism ring of the module M [X]R[X] is isomorphic to a subring of S[[X]]
containing power series 

∑
α∈A fαα, where fα ∈ S and, for every m ∈ M , there are 

only finitely many indices α ∈ A such that fα(m) �= 0.
(2) the endomorphism ring of the module M [[X]]R[[X]] is isomorphic to S[[X]].

Proof. (1) By Proposition 2.6, every ϕ ∈ EndR[X](M [X]) is represented by a power 
series 

∑
α∈A fαα ∈ S[[X]] in which, for every m ∈ M , there are only finitely many indices 

α ∈ A such that fα(m) �= 0. Define S as the set of all power series 
∑

α∈A fαα ∈ S[[X]] in 
which, for every m ∈ M , there are only finitely many indices α ∈ A such that fα(m) �= 0. 
Clearly, S is a subring of S[[X]]. Now define g : EndR[x](M [x]) → S as, for every ϕ ∈
EndR[X](M [x]), g(ϕ) =

∑
α∈A fαα. Then by a routine computation, g is a well-defined 

group monomorphism. Let 
∑

α∈A fαα ∈ S and define ϕ : M [X]R[X] → M [X]R[X] as, for 
every p[X] =

∑
β∈A mββ, ϕ(p[X]) =

∑
β∈A

∑
α∈A fα(mβ)αβ. Then, it is easy to check 

that, ϕ ∈ EndR[X](M [X]) is well-defined and, by the definition, g(ϕ) =
∑

α∈A fαα. 
Thus g is a group isomorphism. Now, assume that ϕ and ψ are two arbitrary elements 
of EndR[X](M [X]) such that g(ϕ) =

∑
α∈A fαα and g(ψ) =

∑
γ∈A hγγ and p[X] =∑

β∈A mββ is an arbitrary element of M [X]. Then

(ψϕ)(p[X]) = ψ(ϕ(p[X])) = ψ(
∑
β∈A

∑
α∈A

fα(mβ)αβ)

=
∑ ∑ ∑

hγfα(mβ)γαβ = [(
∑

hγγ)(
∑

fαα)](
∑

mββ)

β∈A γ∈A α∈A γ∈A α∈A β∈A
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= [(
∑
γ∈A

hγγ)(
∑
α∈A

fαα)](p[X]).

Hence, for every ϕ, ψ ∈ EndR[X](M [X]), g(ψϕ) = g(ψ)g(ϕ). Therefore, g is a ring 
isomorphism and so EndR[x](M [X]) is isomorphic to S.

(2) By Proposition 2.6, every ϕ ∈ EndR[[X]](M [[X]]) is represented by a power series ∑
α∈A fαα ∈ S[[X]]. Conversely, consider 

∑
α∈A fαα ∈ S[[X]] and p[X] =

∑
β∈A mββ

define the map ϕ : M [[X]]R[[X]] → M [[X]]R[[X]] with ϕ(p[X]) =
∑

β∈A
∑

α∈A fα(mβ)αβ. 
Then, it is easy to check that, ϕ is well-defined and ϕ ∈ EndR[[X]](M [[X]]). Now, we 
define a map g : EndR[[X]](M [[X]]) → S[[X]] as, for every ϕ ∈ EndR[[X]](M [[X]]), 
g(ϕ) =

∑
α∈A fαα. Then g is surjective and similar to (1), we can show that g is a ring 

monomorphism. So EndR[[X]](M [[X]]) is isomorphic to S[[X]]. �
In [6], Birkenmeier, Kim and Park show that for many polynomial extensions (includ-

ing formal power series, Laurent polynomials, and Laurent series), a ring R is quasi-Baer 
if and only if the polynomial extension over R is quasi-Baer. In the following we provide 
a module-theoretic analogue of these results.

Theorem 2.8. If MR is a quasi-Baer module, then M [X]R[X] and M [[X]]R[[X]] are quasi-
Baer modules, where X is an arbitrary nonempty set of not necessarily commuting 
indeterminates.

Proof. We will prove that M [x]R[x] is a quasi-Baer module. The remaining cases are 
similar. Let S = EndR(M), E = EndR[x](M [x]) and N be a fully invariant submodule 
of M [x]R[x]. We claim that lE(N ) = Ee, for some idempotent e ∈ E. If N = 0, we 
are finished. Suppose N �= 0 and C be the subset of M containing all coefficients of 
terms of elements in N with minimal degree. Clearly 0 ∈ C. We claim that C is a fully 
invariant submodule of M . Let c ∈ C. Then there is some p[x] = cxt + m1x

t+1 + . . . +
mrx

t+r ∈ N , for some integers (r, t ≥ 0). Since S ⊂ E, for every f ∈ S, f(p[x]) =
f(c)xt + f(m1)xt+1 + . . .+ f(mr)xt+r ∈ N . Thus f(c) ∈ C and so C is a fully invariant 
submodule of M . Since MR is a quasi-Baer module, there exists an idempotent e ∈ S

such that lS(C) = Se. First, to see that Ee ⊆ lE(N ), take n[x] ∈ N . If n[x] = 0, then 
en[x] = 0. So assume n[x] = n0 + n1x + n2x

2 + . . . + nrx
r �= 0. Since n0 ∈ C, en0 = 0. 

Now en[x] = en1x + en2x
2 + . . . + enrx

r ∈ N and so en1 ∈ C. Thus en1 = e(en1) = 0. 
Similarly, we can get en2 = . . . = enr = 0. So en[x] = 0 and e ∈ lE(N ). Hence 
Ee ⊆ lE(N ). Now, we claim that lE(N ) ⊆ Ee. Let g[x] =

∑∞
i=0 gix

i ∈ lE(N ). Then, 
for every p[x] = p0x

k + p1x
k+1 + p2x

k+2 + . . . + ptx
k+t ∈ N , where p0 �= 0 and k is 

a nonnegative integer, g[x]p[x] = 0 and so g0p0 = 0. So g0 ∈ lS(C) = Se ⊆ lE(N ). 
Thus g0e = g0 and similarly, g0pi = 0, for (i = 0, . . . , t). Now g1p0 = 0. Hence similarly, 
g1e = g1 and g1pi = 0, for (i = 0, . . . , t). This process can be continued to yield that 
gie = gi, for (i = 0, . . . , t). So g[x] = g[x]e. Therefore lE(N ) = Ee and the result 
follows. �
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Remark 2.9. Consider p[X] =
∑

α∈A mαα ∈ M [[X]]. For every α ∈ A, define the degree 
of α as the number of indeterminates that are in α. Then p[X] may have more than 
one term of minimal degree. In the proof of the previous theorem, in the general case of 
the (non-commuting) set of indeterminates (M [X]R[X] and M [[X]]R[[X]]), without loss 
of generality, we define C as a subset of M containing all coefficients of terms in N with 
minimal degree.

Theorem 2.10. A module MR is quasi-Baer if and only if M [X]R[X] is quasi-Baer if 
and only if M [[X]]R[[X]] is quasi-Baer, where X is a nonempty set of not necessarily 
commuting indeterminates.

Proof. We prove that MR is quasi-Baer when M [x]R[x] is quasi-Baer. The other cases 
can be shown similarly. Let N be a fully invariant submodule of M . Then, it is easy 
to see that, N [x] is a fully invariant submodule of M [x]. Since M [x]R[x] is quasi-Baer, 
there exists an idempotent e[x] ∈ E = EndR[x](M [x]) such that lE(N [x]) = Ee[x]. Since 
e[x] is an idempotent, constant term of e[x] is an idempotent e0 ∈ S. We claim that 
lS(N) = Se0. Since e[x]N = 0, e0N = 0 and so Se0 ⊆ lS(N). Conversely, let f ∈ lS(N). 
Then fN [x] = 0 and so f ∈ lE(N [x]) = Ee[x]. Thus there is some h[x] ∈ E such that 
f = h[x]e[x]. Since f ∈ S, f = h0e0, where h0 is the constant term of h[x]. Hence 
f ∈ Se0 and so lS(N) ⊆ Se0. Therefore lS(N) = Se0 and M is a quasi-Baer module. 
The remainder of the proof follows from Theorem 2.8. �

In 1974, Armendariz has shown that, for a reduced ring R, R[x] is a Baer ring if and 
only if R is a Baer ring ([2], Theorem B). In the following we provide a module-theoretic 
analogue of Armendariz’s result.

Definition 2.11. ([11], Definition 3.2) A right R-module M is said to satisfy the IFP
(insertion of factors property) if, for all ϕ ∈ S, rM (ϕ) is a fully invariant submodule of 
M (or, equivalently, for all m ∈ M , lS(m) � S).

Proposition 2.12. An R-module with IFP is Baer if and only if it is quasi-Baer.

Proof. Assume that M is a quasi-Baer R-module and I is a left ideal of S = EndR(M). 
Since M satisfies the IFP, for every ϕ ∈ I, rM (ϕ) � M . Thus rM (I) = ∩ϕ∈IrM (ϕ) is a 
fully invariant submodule of M and so M is Baer. The converse is trivial. �
Proposition 2.13. Let MR be a quasi-Baer module. The following conditions are equiva-
lent:

(1) MR satisfies IFP;
(2) M [x]R[x] satisfies IFP;
(3) M [[x]]R[[x]] satisfies IFP.
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Proof. (1) ⇒ (2) Let p[x] = m0x
k +m1x

k+1 + . . .+mrx
k+r ∈ M [x], with m0 �= 0. Then, 

for every ϕ[x] = f0 + f1x + f2x
2 + . . . ∈ EndR[x]M [x], such that ϕ[x](p[x]) = 0 we have

(1) f0(m0) = 0,
(2) f0(m1) + f1(m0) = 0,
(3) f0(m2) + f1(m1) + f2(m0) = 0,

...

By hypothesis and Proposition 2.12, M is a Baer module. Let S = EndR(M). Since M
satisfies the IFP, for every idempotent e ∈ S, rM (e) = (1 − e)M � M and so 1 − e is 
a left semicentral idempotent and e is a right semicentral idempotent. Hence, for every 
idempotent e ∈ S, 1 − e is a left semicentral idempotent and consequently e is a left 
semicentral idempotent. Therefore every idempotent e ∈ S is left and right semicentral. 
So every idempotent e ∈ S is central and S is an abelian ring. So there are central 
idempotents e0, . . . , er ∈ S such that lS(mi) = Sei. By (1), f0e0 = e0f0 = f0. Left 
multiplying (2) by e0 we obtain f0(m1) = 0. Hence f1(m0) = 0. So f0e1 = e1f0 = f0 and 
f1e0 = e0f1 = f1. Left multiplying (3) by e0 we obtain f0(m2) + f1(m1) = 0. Multiply 
this equality by e1 from the left we have f2(m0) = 0. Hence f1(m1) = 0. Continuing 
in this way we may obtain fi(mj) = 0, for all i and j. Hence fiS(mj) = 0. Now, let 
ψ[x] = g0+g1x +g2x

2+ . . . ∈ E = EndR[x]M [x]. Then ϕ[x]ψ[x] =
∑∞

t=0(
∑

i+j=t figj)xt. 
So ϕ[x]ψ[x](p[x]) = 0. Hence lE(p[x]) is an ideal of E. Therefore M [x]R[x] satisfies the 
IFP.
(2) ⇒ (1) It is clear.
(1) ⇔ (3) The proof is similar. �
Theorem 2.14. A module MR with IFP, is a Baer module if and only if M [x]R[x] is a 
Baer module if and only if M [[x]]R[[x]] is a Baer module.

Proof. The result follows from Propositions 2.12, 2.13 and Theorem 2.10. �
The next example shows that, the “IFP” condition in Corollary 2.14 is not superfluous. 

There exists an example of a Baer module MR such that M [[x]]R[[x]] is not a Baer module.

Example 2.15. By ([15], Proposition 2.19), the Z-module M = Z 
⊕

Z is a Baer module. 
Let S = EndZ(M) = M2(Z). Then, by ([6], Example 1.1), EndZ[[x]](M [[x]]) � S[[x]] =
M2(Z)[[x]] is not Baer. Hence, by ([15], Theorem 4.1), M [[x]]Z[[x]] is not a Baer module. 
Note that, since lM2(Z)(1, 0) is not an ideal, M does not satisfy “IFP”.

In ([4], Theorem 2.1), the authors proved that R is a right p.q.-Baer ring if and only 
if R[x] is a right p.q.-Baer ring. Also, by ([4], Example 2.6), there exists a commutative 
von Neumann regular (hence p.q.-Baer) ring R such that R[[x]] is not p.q.-Baer. In [12], 
Liu has shown that R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer and any 
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countable family of idempotent has generalized join when all left semicentral idempotents 
are central. For a right p.q.-Baer ring, the condition left semicentral idempotents are 
central is equivalent to assume that R is semiprime ([5], Proposition 1.17). Huang [8]
showed that, in Liu’s result, the condition requiring all left semicentral idempotents being 
central, is redundant.

Definition 2.16. [1] Let M be a right R-module and S = EndR(M). M is called an 
endo-principally quasi-Baer (or simply endo-p.q.-Baer) module if, for every m ∈ M , 
lS(Sm) = Se, for some e2 = e ∈ S.

Theorem 2.17. Let MR be a module and X an arbitrary nonempty set of not necessarily 
commuting indeterminates. If one of the extension modules M [X]R[X], M [[X]]R[[X]], 
M [x]R[x] or M [[x]]R[[x]] of MR is an endo-p.q.-Baer module, then so is MR.

Proof. We will prove that MR is an endo-p.q.-Baer module when the module M [x]R[x]
is endo-p.q.-Baer. The other cases can be shown similarly. Assume that m ∈ M and 
E = EndR[x]M [x] then lE(Em) = Ee[x], for some idempotent e[x] = e0 + e1x + . . . ∈
E. Clearly e0 is an idempotent in S. We claim that lS(Sm) = Se0 and so M is an 
endo-p.q.-Baer module. Since e[x]Em = 0, e[x]Sm = 0 and so e0Sm = 0. Thus Se0 ⊆
lSSm. On the other hand, assume that f ∈ lS(Sm) then f ∈ lE(Em) 

⋂
S = Ee[x] 

⋂
S. 

Hence there is some h[x] ∈ E such that f = h[x]e[x] and so f = h0e0. Thus lSSm ⊆ Se0. 
Therefore lS(Sm) = Se0. �
Corollary 2.18. Let R be a ring. If either of the extension rings R[x] or R[[x]] of R is a 
left p.q.-Baer ring, then so is R.

Theorem 2.19. If MR is an endo-p.q.-Baer module, then M [X]R[X] is endo-p.q.-Baer, 
where X is a nonempty set of not necessarily commuting indeterminates.

Proof. We will prove M [x]R[x] is an endo-p.q.-Baer module. The other cases are similar. 
Let S = EndR(M) and E = EndR[x](M [x]). Consider p[x] = m0 + m1x + . . . + mnx

n

as an arbitrary element of M [x], n ∈ N. It is clear that Ep[x] ⊆ (
∑

1≤i≤n Smi)[x]. 
Since M is an endo-p.q.-Baer module, for every 1 ≤ i ≤ n, lS(Smi) = Sei, for some 
ei ∈ Sr(S). So there is some e ∈ Sr(S) such that 

⋂
1≤i≤n Sei = Se. Hence Se =⋂

1≤i≤n Sei = lE((
∑

1≤i≤n Smi)[x]) ⊆ lE(Ep[x]). Thus Ee ⊆ lE(Ep[x]). Now, let f [x] =
f0 + f1x + f2x

2 . . . ∈ lE(Ep[x]). For every g ∈ S, f [x]gp[x] = 0. So

(1) f0(gm0) = 0,
(2) f0(gm1) + f1(gm0) = 0,
(3) f0(gm2) + f1(gm1) + f2(gm0) = 0,

...
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By (1), f0 ∈ lSSm0 = Se0 and so f0e0 = f0. By (2), f0(e0gm1) +f1(e0gm0) = 0. Since 
egm0 = 0, f0(gm1) = 0. Hence f0 ∈ lSSm1 = Se1 and so f0e1 = f1. Take e′ = e0e1, by 
(3), f0(e′gm2) +f1(e′gm1) +f2(e′gm0) = 0. Since e′gm0 = 0 and e′gm1 = 0, f0(gm2) = 0. 
Thus f0 ∈ lSSm2 = Se2. Continuing in this way we may obtain, for every 1 ≤ i ≤ n, 
f0 ∈ lSSmi = Sei. Hence f0 ∈ Se. Similarly, we may obtain, for every j, fj ∈ Se. Thus, 
f [x] ∈ Ee and so lE(Ep[x]) = Ee. Therefore, M [x]R[x] is an endo-p.q.-Baer module. �

In ([4], Theorem 2.1) Birkenmeier et al. have shown that R is a right p.q.-Baer ring if 
and only if R[x] is a right p.q.-Baer ring. As a consequence of Theorem 2.19, we obtain 
the following corollary that is similar to the result for a ring to be left p.q.-Baer. Notice 
that the left p.q.-Baer property of R[x] is not equivalent to its right p.q.-Baer property.

Corollary 2.20. A ring R is left p.q.-Baer if and only if R[x] is left p.q.-Baer.

By ([4], Example 2.6), there is a p.q.-Baer ring R such that R[[x]] is not a p.q.-Baer 
ring. Therefore, as illustrated in the following example, for an endo-p.q.-Baer module 
MR, the power series extension M [[X]]R[[X]] is not necessarily endo-p.q.-Baer.

Example 2.21. By ([15], Proposition 2.19), the Z-module M = Z 
⊕

Z is a Baer mod-
ule and so M is an endo-p.q.-Baer module. Let S = EndZ(M) = M2(Z). Then, 
by Theorem 2.3, EndZ[[x]](M [[x]]) = S[[x]]. Assume to the contrary that the finitely 
generated Z[[x]]-module M [[x]]Z[[x]] is an endo-p.q.-Baer Z[[x]]-module. Then, by ([1], 
Proposition 3.5), S[[x]] = M2(Z)[[x]] is a left p.q.-Baer ring. But, similar to ([6], Ex-
ample 1.1), no nonzero idempotent element in S[[x]] = M2(Z)[[x]] is contained in 

l(
(

0 0
2 0

)
+
(

1 0
0 0

)
x), which is a contradiction. Thus M [[x]] is not an endo-p.q.-Baer 

Z[[x]]-module.

In the following we investigate conditions in which a power series extension of an 
endo-p.q.-Baer module is endo-p.q.-Baer.

Similar to the Liu’s definition of the generalized join [12], we give the following.

Definition 2.22. A countable family of left semicentral idempotents {e0, e1, . . .} of a ring 
R is said to have a generalized join e if there exists e ∈ Sl(R) such that:

(1) (1 − e)Rei = 0.
(2) If d is an idempotent and (1 − d)Rei = 0 then (1 − d)Re = 0.

Definition 2.23. Let M be a right R-module and S = EndR(M). Consider the countable 
family of fully invariant direct summands E = {e0M, e1M, . . .} of M . We say E has a 
generalized countable join if there exists a fully invariant direct summand eM of M such 
that:
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(1)
∑

i∈N eiM ⊆ eM .
(2) If fM is a direct summand of M and 

∑
i∈N eiM ⊆ fM , then eM ⊆ fM .

By ([1], Proposition 3.17), if M is a quasi-Baer module then the sum of every family 
of direct summands is a direct summand of M , so, in this case, every countable family 
of fully invariant direct summands has a generalized countable join.

Proposition 2.24. Let M be a right R-module and S = EndR(M). Every countable family 
of fully invariant direct summands of M has a generalized countable join if and only if 
every countable family of left semicentral idempotents of S has a generalized join.

Proof. Assume that every countable family of fully invariant direct summands of M has 
a generalized countable join and {e1, e2, . . .} is a countable family of left semicentral 
idempotents of S. Then E = {e1M, e2M, . . .} is a countable family of fully invariant 
direct summands of M . So E has a generalized countable join, as, eM . Hence, for every 
i ∈ N, eiM ⊆ eM and so (1 − e)Sei = 0. Assume that there is some f ∈ Sl(S) such that 
(1 − f)Sei = 0 then, for every i ∈ N, eiM ⊆ fM . Hence, by part (2) in Definition 2.23, 
eM ⊆ fM and so (1 − f)Se = 0. As a result {e1, e2, . . .} has a generalized countable 
join e. The converse is obtained by reversing all above arguments. �

The next result shows that, when left semicentral idempotents of a ring R are central 
then the set of left semicentral idempotents of R[[x]] is Sl(R).

Lemma 2.25. If R is a ring with Sl(R) ⊆ C(R), then Sl(R[[x]]) = Sl(R).

Proof. Clearly Sl(R) ⊆ Sl(R[[x]]). If e[x] = e0 + e1x + e2x
2 + . . . ∈ Sl(R[[x]]) then 

e[x]2 = e[x]. So

(1) e2
0 = e0

(2) e0e1 + e1e0 = e1,
(3) e0e2 + e1e1 + e2e0 = e2,

...

By (1), e0 is an idempotent in R. Since e[x] ∈ Sl(R[[x]]), e0 ∈ Sl(R). So e0 is central 
and by (2), 2e0e1 = e1 and 2e0e1 = e0e1. Hence e0e1 = 0 and so e1 = 0. From left 
multiplication (3) by e0 we may obtain that e0e2 = 0 and e2 = 0. Continuing in this 
way we may obtain, for every i, e0ei = 0 and ei = 0. Thus, e[x] = e0 ∈ Sl(R). Therefore, 
Sl(R[[x]]) ⊆ Sl(R) and finally Sl(R[[x]]) = Sl(R). �
Theorem 2.26. Let MR be a finitely generated module with S = EndR(M). If every 
semicentral idempotent in S is central then the following statements are equivalent:
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(1) M [[X]]R[[X]] is an endo-p.q.-Baer module;
(2) M [[x]]R[[x]] is an endo-p.q.-Baer module;
(3) MR is an endo-p.q.-Baer module and every countable family of fully invariant direct 

summand of M has a generalized countable join.

Proof. We will prove part (1) ⇔ (3), for X = {x}. The remaining cases are sim-
ilar. (1) ⇒ (3) By Theorem 2.17, MR is an endo-p.q.-Baer module. Assume that 
{e0, e1, . . .} be a countable set of left semicentral idempotents of S. By Corollary 2.7, 
E = EndR[[x]]M [[x]] = S[[x]]. Take e[x] = e0 + e1x + e2x

2 + . . .. So e[x] ∈ E. Since M is 
finitely generated, M [[x]]R[[x]] is a finitely generated endo-p.q.-Baer module and so, by 
([1], Proposition 3.5), E = S[[x]] is a left p.q.-Baer ring. Thus there is some f [x] ∈ Sl(E)
such that lE(Ee[x]) = Ef [x]. By the previous lemma, there is some f0 ∈ Sl(S) such 
that f [x] = f0. Hence, for every g ∈ S, f0ge[x] = 0 and so, for every i, f0gei = 0. Take 
e = 1 −f0 then, for every i, (1 −e)Sei = 0. Suppose that there is some f ∈ Sl(S) such that, 
for every i, (1 − f)Sei = 0. Then, for every g ∈ S and h[x] = h0 + h1x + h2x

2 + . . . ∈ E,

(1 − f)g(h[x]e[x]) = (1 − f)g(
∞∑
k

∑
i+j=k

hiej) = 0.

Thus (1 − f)g ⊆ lEEe[x] = Ef0. Hence (1 − f)gf0 = (1 − f)g and so we have (1 −
f)ge = 0. Therefore, {e0, e1, . . .} has generalized join e and so, by Proposition 2.24, every 
countable family of fully invariant direct summand of M has a generalized countable join.

Conversely, assume that MR is an endo-p.q.-Baer module and every countable family 
of fully invariant direct summand of M has a generalized countable join. Consider an arbi-
trary element of M [[x]] as p[x] = m0+m1x +m2x

2 . . .. Then Ep[x] ⊆ (
∑

i=0,1,... Smi)[x]. 
Since M is an endo-p.q.-Baer module, for every i, there is ei ∈ Sr(S) such that 
lSSmi = Sei and Smi ⊆ (1 − ei)M . So the countable family of fully invariant di-
rect summands {(1 − e0)M, (1 − e1)M, . . .} has a generalized countable join (1 − e)M . 
Thus

Se = lS(1 − e)M ⊆ lS
∑

i=0,1,...
(1 − ei)M ⊆ lS(

∑
i=0,1,...

Smi).

Therefore Ee ⊆ lE(Ep[x]). Now, let ϕ[x] = f0 + f1x + f2x
2 . . . ∈ lEEp[x], for every 

g ∈ S, f [x]gp[x] = 0. So

(1) f0(gm0) = 0,
(2) f0(gm1) + f1(gm0) = 0,
(3) f0(gm2) + f1(gm1) + f2(gm0) = 0,

...
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By (1), f0 ∈ lSSm0 = Se0 and so f0e0 = f0. By (2), we will have f0(e0gm1) +
f1(e0gm0) = 0. Since e0gm0 = 0, f0(gm1) = 0. Hence f0 ∈ lSSm1 = Se1 and so 
f0e1 = f1. If e′ = e0e1 then f0(e′gm2) + f1(e′gm1) + f2(e′gm0) = 0, by (3). Since 
e′gm0 = 0 and e′gm1 = 0, f0(gm2) = 0 and so f0 ∈ lSSm2 = Se2. Continuing in this 
way we may obtain, for every (i = 0, 1, . . .), f0 ∈ lSSmi = Sei. Similarly, we may obtain, 
for every j, fj ∈

⋂
Sei. Hence, for every (i, j = 0, 1, . . .), fjei = fj . Since MR is a finitely 

generated module, by ([1], Proposition 3.5), S = EndR(Mϕ) is a left p.q.-Baer ring. 
So, for every (j = 0, 1, . . .), there is some idempotent hj ∈ S such that lSSfj = Shj . 
Since ej is right semicentral, by the hypothesis, ej is central. Thus, for every g ∈ S, 
gfj = gfjei = eigfj and so (1 −ei)gfj = 0 holds, for every (i = 0, 1, . . .). Hence, for every 
(i = 0, 1, . . .), (1 −ei) ∈ lSSfj = Shj and so hj(1 −ei) = (1 −ei)hj = (1 −ei). Let 1 −e is 
a generalized join for {(1 − e0), (1 − e1), . . .}, for every (j = 0, 1, . . .), hj(1 − e) = (1 − e)
and so (1 − hj)e = (1 − hj). Hence fj = (1 − hj)fj = fj(1 − hj) = fj(1 − hj)e = fje. 
Thus ϕ[x] = ϕ[x]e ∈ Ee[x]. So lEEp[x] = Ee. Therefore M [[x]]R[[x]] is an endo-p.q.-Baer 
module. �

By ([12], Theorem 3), if R is a ring with Sl(R) ⊆ C(R) then R[[x]] is a right p.q.-Baer 
ring if and only if R is a right p.q.-Baer ring and any countable idempotent in R has 
a generalized join. As a consequence of the previous theorem we obtain the following 
corollary that is similar to the result for the left p.q.-Baer rings. Note that, for a ring R
with Sl(R) ⊆ C(R), Sl(R) = Sr(R) = C(R).

Corollary 2.27. Let R be a ring with Sl(R) ⊆ C(R). Then R[[x]] is a left p.q.-Baer ring 
if and only if R is a left p.q.-Baer ring and any countable family of left semicentral 
idempotent has a generalized join.

Similar to the Huang’s definition [8], we give the following.

Definition 2.28. A countable subset E = {e0, e1, . . .} of Sl(R) is said to have a generalized 
countable join e if there exists e ∈ Sl(R) such that, given a ∈ R:

(1) eei = ei, for all positive integers i.
(2) If aei = ei, for all positive integers i, then ae = e.

Proposition 2.29. Let MR be an endo-p.q.-Baer module with S = EndR(M). If every 
countable subset of left semicentral idempotents in S has a generalized countable join 
in Sl(R) then, for every countable subset N = {m1, m2, . . .} of M , lS(

∑
i∈N Smi) is 

generated by an idempotent, as a left ideal of S. The converse holds if M contains a copy 
of S as a left S-module.

Proof. Assume that N = {m1, m2, . . .} ⊆ M and I = lS(
∑

i∈N Smi). We get lS(Smi) =
Sei, for each mi ∈ N . Suppose that e is a generalized countable join for the set of left 
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semicentral idempotents {(1 − e1), (1 − e2), . . .}. Then we have e(1 − ei) = (1 − ei) and 
so e − eei = 1 − ei. Hence 1 − e = (1 − e)ei. Thus, for each mi ∈ N , (1 − e)Smi =
(1 − e)eiSmi = 0. Therefore S(1 − e) ⊆ I. On the other hand, suppose g ∈ I =

⋂
i∈N Sei

then, for every i ∈ N, gei = g. Hence g(1 − ei) = 0 and so (1 − g)(1 − ei) = (1 − ei). 
Thus g(1 − e) = g and so g ∈ S(1 − e). Therefore I = S(1 − e). Conversely, assume 
that M contains a copy of S as a left S-module and X = {e1, e2, . . .} is a subset of left 
semicentral idempotents in S. Now according to assumption, lS(

∑
i∈N Sei) is generated 

by an idempotent e ∈ S, as a left ideal of S. So, for every i, (1 − e)ei = ei. If, for every 
i, aei = ei then (1 − a)ei = 0. So (1 − a)fei = (1 − a)eifei = 0, for every f ∈ S. Hence 
(1 − a) ∈ lSSei, for every i. Thus (1 − a) ∈ Se and so (1 − a)e = e. Therefore 1 − e is a 
countable generalized join for X. �
Corollary 2.30. A ring R is left p.q.-Baer and every countable subset of left semicentral 
idempotents in R has a generalized countable join if and only if the left annihilator of 
every countably generated left ideal of R is generated by an idempotent.

Theorem 2.31. For an R-module M , M [[x]] is an endo-p.q.-Baer right R[[x]]-module 
if and only if MR is an endo-p.q.-Baer module and for every countable subset N =
{m0, m1, . . .} of M , lS(

∑
i=0,1,... Smi) is generated by an idempotent in S, as a left ideal 

of S.

Proof. Let M be an R-module, S = EndR(M) and E = EndR[[x]](M [[x]]). If M [[x]]R[[x]]
is an endo-p.q.-Baer module then, by Theorem 2.17, MR is an endo-p.q.-Baer module. Let 
N = {m0, m1, . . .} be a countable subset of M . Since MR is an endo-p.q.-Baer module, 
for every (i = 0, 1, . . .), there is some idempotent fi in S such that lS(Smi) = Sfi. Since 
M [[x]]R[[x]] is an endo-p.q.-Baer module, for every p[x] = m0 +m1x + . . . ∈ M [[x]], there 
is some idempotent e[x] = e0 + e1x + . . . ∈ E such that lE(Ep[x]) = Ee[x]. So, for every 
g ∈ S, e[x]gp[x] = 0 and we have:

(1) e0(gm0) = 0,
(2) e0(gm1) + e1(gm0) = 0,
(3) e0(gm2) + e1(gm1) + e2(gm0) = 0,

...

By (1), e0 ∈ lSSm0 = Sf0 so e0f0 = e0. In (2), e0(f0gm1) + e1(f0gm0) = 0. Since 
f0gm0 = 0, e0(gm1) = 0 and we obtain that e0 ∈ lSSm1 = Sf1 and so e0f1 = e0. Take 
e = f0f1, by (3), we have e0(egm2) + e1(egm1) + e2(egm0) = 0. Since egm0 = 0 and 
egm1 = 0, e0(gm2) = 0. Hence e0 ∈ lSSm2 = Sf2. Continuing in this way we may obtain, 
for every i, e0Smi = 0. Thus, clearly e0 is an idempotent in S e0 ∈ andlS(

∑
i=0,1,... Smi). 

So Se0 ⊆ lS(
∑

i=0,1,... Smi). For the revers inclusion, take g ∈ lS(
∑

i=0,1,... Smi). Since 
Ep[x] ⊆ (

∑
i=0,1,... Smi)[x], g ∈ lE(Ep[x]) = Ee[x]. So g = ge[x]. Hence g = g0e0 and so 

g ∈ Se0. Therefore lS(
∑

i=0,1,... Smi) = Se0.
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Conversely, assume that MR is an endo-p.q.-Baer module and, for every countable 
subset {m0, m1, . . .} of M , lS(

∑
i=0,1,... Smi) is generated by an idempotent. Hence there 

is some e ∈ Sr(S) such that lS(
∑

i=0,1,... Smi) = Se. If we take p[x] = m0 + m1x +
m2x

2 + . . . ∈ M [[x]] then Ep[x] ⊆ (
∑

i=0,1,... Smi)[x]. Hence Ee ⊆ lE(Ep[x]). Now, let 
e[x] = e0+e1x +e2x

2 . . . be an element in lE(Ep[x]). Then, for every g ∈ S, e[x]gp[x] = 0. 
So

(1) e0(gm0) = 0,
(2) e0(gm1) + e1(gm0) = 0,
(3) e0(gm2) + e1(gm1) + e2(gm0),

...

Since MR is an endo-p.q.-Baer module, for every (i = 0, 1, . . .), there is some idem-
potent fi in S such that lSSmi = Sfi. By (1), e0 ∈ lSSm0 = Sf0 so e0f0 = e0. In (2), 
e0(f0e0gm1) + e1(f0e0gm0) = 0. Since f0e0gm0 = 0, e0(gm1) = 0. Hence e0 ∈ lSSm1 =
Sf1 and so e0f1 = e0. Take e = f0f1, by (3), e0(egm2) +e1(egm1) +e2(egm0) = 0. Since 
egm0 = 0 and egm1 = 0, e0(gm2) = 0. Thus e0 ∈ lSSm2 = Sf2. Continuing in this way 
we may obtain, for every i, e0 ∈ lSSmi = Sfi. Hence e0 ∈ Se. Similarly, we may obtain, 
for every i, ei ∈ Se. Thus, e[x] ∈ Ee and so lEEp[x] = Ee. Therefore, M [[x]]R[[x]] is an 
endo-p.q.-Baer module. �

In [13], Liu has shown that R[[x]] is left p.q.-Baer if and only if R is left p.q.-Baer and 
the left annihilator of the left ideal generated by any countable family of idempotents 
in R is generated by an idempotent. By applying Theorem 2.31 we obtain the following 
corollaries.

Corollary 2.32. R[[x]] is left p.q.-Baer if and only if R is left p.q.-Baer and the left 
annihilator of every countably generated left ideal of R is generated by an idempotent.

In [12], Liu has shown that R is right p.q.-Baer if and only if R[[x]] is right p.q.-Baer 
and any countable family of idempotent has generalized join when all the left semicentral 
idempotent are central. We also recall from [5, Proposition 1.17] that, for a right p.q.-Baer 
ring, the condition left semicentral idempotents are central is equivalent to assume R is 
semiprime. In the following corollary we see that the semiprime condition in Liu’s result 
is not necessary.

Corollary 2.33. A ring R is left p.q.-Baer and every countable subset of left semicentral 
idempotents in R has a generalized countable join in R if and only if R[[x]] is a left 
p.q.-Baer ring.

Proof. By Corollary 2.32 and Corollary 2.30, the result follows. �
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