期刊论文详细信息
JOURNAL OF ALGEBRA 卷:313
Quantum α-determinant cyclic modules of Uq (gln)
Article
Kimoto, Kazufumi ; Wakayama, Masato
关键词: alpha-determinant;    quantum group;    Iwahori-Hecke algebra;    q-Young symmetrizer;    cyclic module;    irreducible decomposition;    elementary divisors;    content polynomial;    Kostka number;    partition function;   
DOI  :  10.1016/j.jalgebra.2006.12.015
来源: Elsevier
PDF
【 摘 要 】

As a particular one parameter deformation of the quantum determinant, we introduce a quantum alpha-determinant det(q)((alpha)) and study the Uq(gl(n))-cyclic module generated by it: We show that the multiplicity of each irreducible representation in this cyclic module is determined by a certain polynomial called the q-content discriminant. A part of the present result is a quantum counterpart for the result of Matsumoto and Wakayama [S. Matsumoto, M. Wakayama, Alpha-determinant cyclic modules of gl(n) (C), J. Lie Theory 16 (2006) 393-405], however, a new distinguished feature arises in our situation. Specifically, we determine the degeneration of the multiplicities for 'classical' singular points and give a general conjecture for singular points involving semi-classical and quantum singularities. Moreover, we introduce a quantum alpha-permanent per(q)((alpha)) and establish another conjecture which describes a 'reciprocity' between the multiplicities of the irreducible summands of the cyclic modules generated respectively by det(q)((alpha)) and per(q)((alpha)). (c) 2007 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2006_12_015.pdf 331KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次