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Abstract

As a particular one parameter deformation of the quantum determinant, we introduce a quantum o-
determinant det;a) and study the U (gl,,)-cyclic module generated by it: We show that the multiplicity of
each irreducible representation in this cyclic module is determined by a certain polynomial called the ¢-
content discriminant. A part of the present result is a quantum counterpart for the result of Matsumoto and
Wakayama [S. Matsumoto, M. Wakayama, Alpha-determinant cyclic modules of gl,, (C), J. Lie Theory 16
(2006) 393-405], however, a new distinguished feature arises in our situation. Specifically, we determine the
degeneration of the multiplicities for ‘classical’ singular points and give a general conjecture for singular
points involving semi-classical and quantum singularities. Moreover, we introduce a quantum «-permanent
peréa) and establish another conjecture which describes a ‘reciprocity’ between the multiplicities of the

()

irreducible summands of the cyclic modules generated respectively by det'® and perg .
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1. Introduction

Let A(Mat,) be the associative C-algebra consisting of polynomial functions on the set Mat,
of n by n matrices. We denote by x;; the standard coordinate function on Mat, with respect to
the matrix unit E;;. The right translation of the general linear group GL, on A(Mat,) induces
the representation pg, of the enveloping algebra U (gl,) of gl, = gl,(C) as

Pgt, (€ij) = Zxkz ax

kJ

Here {e;;}1<i, j<n 18 the standard basis of gl,, so that [e;;, exs] = & jkeir — &jiex;j. It is a very basic
fact that the determinant

det X = Z (—1)e(w)xw(1)1 s Xw@mn € A(Matn)

weS,

of X = Z i xij E;; € Mat, (A(Mat,)) is an invariant of the action of GL,. In other words, we
see that pg[ (Z/l (gl,)) - detX = C - det X. We also have another distinguished element called the
permanent per X in .A(Mat,) defined by

perX = Z Xw()1 " Xw@n)n-

wes,
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Though per X is not an invariant of the action, the cyclic module pg; (U4 (gl,)) - per X gives an
irreducible representation of GL, on the space of n-symmetric tensors of C”".
For a complex parameter «, the «-determinant is defined by

det® X = Z Oé"_v"(w)xw(])lxw(z)z < Xwmn € A(Mat,,),
weS,

where v, (w) is the number of cycles in w € G, [8]. We notice that det™V X = det X and
det!) X = per X. Thus the a-determinant interpolates the determinant and permanent. In the
representation-theoretic point of view, we can also understand that the ¢/ (g[,,)-cyclic module gen-
erated by the «-determinant interpolates the two irreducible representations; the skew-symmetric
tensor representation pgr (U(gl,)) - det X and symmetric tensor representation pgy, (U (gl,)) -
per X.

Therefore it is natural to study the structure of the interpolating module Vn(a) = pg1, U(gl,)) -
det® X. This is done in [6]. The results are summarized as follows (see Section 4.2). The mod-

78
ule V,,(“) is isomorphic to the tensor module (C")®" = D, E?f for all but finite exceptional
values of «. Here E) denotes the irreducible highest weight module of 2/(gl,,) of highest weight

A and f* the multiplicity of Ej. The isotypic component E;‘?f "in Vn(a) of highest weight A dis-
appears when « is a root of the (modified) content polynomial c (x) [5]. Further, if we consider
the cyclic module pgr, (U(gl,)) - (det(“) X)¥ for positive integers k, we see that the disappear-
ance of a subrepresentation (from the cyclic module in a general position) is described by the
Jacobi polynomial with special parameters determined by k and the corresponding subrepresen-
tation [3]. More precisely, for each irreducible representation with highest weight A appearing
in pgr, U(gly)) - (det("‘) X)¥, there is a polynomial F,f‘ (x) such that the A-isotypic component
in pgr, U(gly)) - (det™ X)* is killed when « is a root of Fk)” (x), and the polynomial Fk}‘ (x) is
given as the Jacobi polynomial whose parameters are explicitly determined by k and A. Thus,
we expect to find new families of polynomials systematically by considering the cyclic modules
Pg1, U(gl,)) - (det(“) X)* forn >3 as polynomials whose roots describe the degeneration of the
module pg; (U(gl,)) - (det™ X)E.

The point of the story is also that only one element det'® X generates various irreducible rep-
resentations with emphasizing that special polynomials describe the degeneration of the module
Pgr, U(gl,)) - det® X . This is quite a contrast to the standard representation theory in which
we construct the irreducible ¢/ (gl,,)-modules by utilizing various minor determinants as highest
weight vectors and we get various special functions as matrix coefficients of them.

The situation allows us to propose a strategy for discovering new special polynomials as poly-
nomials which controls the structure of cyclic ¢/(gl,,)-modules generated by the «-determinants.
Since there are several special functions such as the Jacobi (big/little) g-polynomials which we
obtain as matrix coefficients of irreducible representations of quantum groups, it is natural to
quantize the situation described above to get wider class of special polynomials.

We take the natural representation o of the quantum enveloping algebra U4, (g[,,) on the quan-
tum matrix algebra A, (Mat,). We introduce a natural quantization det,(]“) X e A;(Mat,) of the
a-determinant det® as a particular deformation of the quantum determinant dety X in [2] by the
formula

det‘(]a) X = Z Ol”fv”(w)qﬁ(w)xw(l)l .. .xw(”)n c Al] (Matn)

wes,
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We call this element det;a) quantum o-determinant. We notice that the quantum «-determinant

det((l_l) for @ = —1 is nothing but the quantum determinant det, .
In the present paper, as a beginning of the study, we treat the irreducible decomposition of the

cyclic module V(a = p Uy (gl,)) - det(a) and show that there are finite number of values called

singular values such that the structure of Vf, ¢ changes drastically if « is one of such values,
and the singular values are actually described as roots of some polynomials called g-content
discriminants.

We now briefly sketch the contents of the paper below.

The basic conventions on the quantum matrix algebra A, (Mat,), the quantum enveloping
algebra U, (gl,) (as a quantum group) and the Iwahori-Hecke algebra H,(&,) are collected
briefly in Sectlon 2.

In Section 3, we investigate several basic properties of the cyclic module V - As a starting
point, we show in Proposition 3.4 that Vf,‘f‘,; is equivalent to the tensor product module (CmHy®n
for all but finite «. Namely, for almost all values «, the multiplicity miI‘ (o) of the highest weight

module Eﬁ 4 corresponding to a highest weight (= partition) A in fo% is equal to the number
f * of standard tableaux with shape A. If « is one of those finite exceptions, that is, if mé () <
f7* holds, we call it a singular point (or value) as we mentioned above. To describe highest
weight vectors of the irreducible factors of the decomposition of V,(1 ¢ in terms of the quantum
a-determinants, we employ the g-Young symmetrizers studied in [1].

The degeneration of the cyclic module V;‘Z is discussed in Section 4. For each A, a f* x f*
matrix called a g-content transition matrix and a polynomial in « called a ¢-content discriminant
are introduced. The zeros of the g-content discriminants are the singular values. In contrast with
the classical theory developed in [6], the g-Young symmetrizers cannot give us enough informa-
tion about the zeros of g-content discriminants, and the explicit description of the zeros of these
polynomials seems to be a far reaching problem. This is the most difficult point in the present
study which we have never encountered in the classical situation [6].

In the classical theory, the content transition matrix is a scalar one whose scalar is given
by the so-called content polynomial (see [5]). It follows hence that only j:% (1 <k <n) are
the singular points and the degeneration m} (1) < f* implies the vanishing m}(£1) = 0. In

the quantization, the singular points —1, —%, el —ﬁ remains singular, whereas the points
1, %, e, ﬁ themselves are no longer singular but are g-deformed, and even new values (de-

pending on ¢) other than 2n — 2 singular values above come up as extra singular points. We call
the first member of singular points classical, the second one semi-classical and the last one quan-
tum, respectively (see Section 4.3). We devote ourselves to investigate such singular points in the
latter half of the section and give one conjecture concerning the multiplicity degeneration for sin-
gular values (Conjecture A, see also Theorem 4.11). Indeed, for our quantum case, it occurs that
0< mg (o) < f* for a quantum singular point o. We furthermore translate this conjecture into
the framework of the bimodule of U, (gl,) and H,;(S,) in terms of Schur-Weyl duality [1,2].
We also provide explicit calculations of some g-content discriminants for readers’ help. It would
be also interesting to study the relation between the multiplicity mg (ov) and the multiplicity of «
as a root of the corresponding g-content discriminant. We treat this subject in the future study.
In the last section, we introduce a notion of quantum «- permanent per,(] @) — det( ) and dis-

cuss shortly the U, (gl,,)-cyclic module U 5[121 generated by per through examples. In the classi-
cal case, as we ment10ned above, the U/(gl,,)-cyclic module generated by the «-determinant inter-
polates the two irreducible representations pgy, (U (gl,,)) - det™V X and Pgr, U(gl,)) - det™) X.
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Whereas, in the quantum situation, the cyclic module Vf,a; is irreducible (skew- symmetric ten-

(@) -

sor representation) at « = —1 but not irreducible at = 1, as well as the cyclic module U, 4 is
irreducible (symmetric tensor representation) at « = —1 but not irreducible at « = 1.
Classical Case Quantum Case
. - - 1
(skew-symmetric tensor) ® Vn( D Vfl,ql) U 5121
N\
. N\
. ‘quantum covering’ N~
(generic «) O Vn(a) ikt V,(fl; R0U ;a;
A
AN
A\
. -1
(symmetric tensor) o Vn(l) Vf,lzj U ;,q )

@ irreducible
O reducible

By looking at this ‘quantum covering structure’ of interpolating property as well as examining
examples (Examples 3.11, 3.12 and 5.2, 5.3, respectively), we infer an existence of ‘reciprocity’
between cyclic modules generated by detm and per((]a). Based on this observation, we establish
another conjecture (Conjecture B) which describes a ‘reciprocity’ between the multiplicities of
the irreducible summands of the cyclic modules fof; and U ff?, In the very final section of the
paper, we introduce the partition functions as respective generating functions

’\(Ot) = ’\(Ot)
TURTED DRI 3) S
A: partitions n=0 Akn
A 00 A
mg () per m (@) per
Wy = Y e oy e
A: partitions f n=0 Akn f

of the multiplicities and restate a weaker version of the two conjectures above in terms of the
partition functions (here mf]‘ (@)per denotes the multiplicity of E 2 q in U 5,‘2). If « is not singu-
lar, then ﬁget(t, «) is identical with the generating function ]_[floz1 (1 = ")~ of the number of
partitions.

Since one can obtain neither the zeros of g-content discriminants nor the discriminants them-
selves explicitly, in order to understand a deeper structure of the g-content discriminants as
polynomials, it might be an inevitable task to characterize the g-content transition matrices in
a suitable way, e.g. like in a R-matrix formalism. Although the situation is quite mysterious,
in Proposition 3.8, we describe a symmetric structure of some matrix (see Lemma 4.2) closely
related to the g-content transition matrices.

Conventions

Throughout the paper, C is the complex number field and Z is the ring of rational integers.
The symbol ¢ denotes a nonzero complex number and we always fix a branch for the square
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root ¢ /2. We also assume that ¢ is not a root of unity to assure the complete reducibility of the

finite dimensional representations of U, (gl,,) and H,(&,) as well as to utilize the highest weight
theory of U, (gl,). (We will further suppose that ¢ is ‘generic’ to make the discussion simple.
See the end of Section 3.)

We denote by G,, the symmetric group of degree n. The simple transposition (k,k + 1) is
denoted by si. For w € G,,, £(w) is the inversion number of w and v, (w) is the number of cycles
in w. Notice that v, (-) is a class function on &,;, but £(-) is not.

For a partition (or a Young diagram) A = (A1, ..., Ak) of n, Gy 1= 6, x --- x G, is the
Young subgroup of &,,. We also denote by STab(A) the set of all standard tableaux with shape A,
and put f* = | STab(1)|.

2. Preliminaries on representations of quantum groups

We briefly recall the basic notion of the quantum enveloping algebra U4, (gl,), the quantum
matrix algebra 4, (Mat,), and the Iwahori-Hecke algebra H,(&,) to fix the conventions. The
conventions on quantum groups are the same as in Noumi—Yamada—Mimachi [7] and Jimbo [2],
but the conventions for the Iwahori—Hecke algebra are slightly different from those in Gyoja [1]
because of the compatibility with the conventions on quantum algebras.

2.1. Quantum enveloping algebra

By definition, £, is a Z-module L, := Ze| + - - - + Ze,, generated by the symbols ¢y, ..., &,.
We fix a bilinear form (-,-) on L, defined by (¢;, &;) = §;;. Each element in the lattice £, is
called an integral weight. The quantum enveloping algebra U/, (gl,) is a C-associative algebra
generated by the symbols ¢;, f; (1 <i <n—1)and ¢* (A € %[,,,) satisfying certain fundamental
relations (see [7]). The algebra U4, (gl,,) has a Hopf algebra structure with the coproducts

Alg") =¢* ® 4",
Aler) = ex ® q—(sk—8k+1)/2 + q(Ek—8k+1)/2 ® ek,
Af) = fr ® q—(sk—6k+1)/2 + q(Sk—8k+1)/2 R fi.

The vector representation pcr of U, (gl,) on C" is defined by

pci(q”) -ej =q*4ile;, pcr(ex) - ej =3; k+1€k, pcn (fir) - e; =8 jker+1,
where {e}1< ;< is the standard basis of C". By the coproduct on I, (g[,,), the tensor product
representation pgfl of Uy (gl,,) on (C")®" is given by

pen(a") ej @ ®ej, =g eule; ® - e,

n
pEer) ey ® - ®ej, =Y 8 kt1qi(its s jn)ejy ® - ® e Ve Bej, @ ey,
=1

n
PEr(fi)eji ® - @ej, =D 8jikdi(j1.--- jn)ej; @ @€ ®err1 @), O Bej,
=1
2.1)

(ek—ek+1) /2,85 ++ej;_, —Ejiy1 " E

where we put q,lC Gty eevs jn)i= q< ) for simplicity.
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Each finite dimensional irreducible 4, (gl,,)-module is a highest weight module, and it is para-
metrized by a dominant integral weight, that is, an integral weight Aje1 + - - - + A, &, with the
property Aj = --- = A, = 0. We identify a dominant integral weight A with a partition (or a
Young diagram) (A1, ..., A,). We often denote by the same symbol A to indicate both the weight
A1€1+---+A,&, and the partition (A1, ..., A,). The highest weight U4, (gl,,)-module correspond-
ing to A is denoted by Eﬁ’q.

2.2. Quantum matrix algebra

The quantum matrix algebra 4, (Mat,) is a C-associative algebra generated by n? letters x; |
(1 <1i, j < n)obeying the following fundamental relations

XikXjk = qX jkXiks XkiXkj = qXkjXei (@ < J),
XilX jk = X jkXil, xikXji — X jixic = (q — ‘]_l)xilxjk (i<jk<D.
The algebra A, (Mat,,) becomes a bialgebra having the coproduct
n
A(xij) = ink ® X -
k=1
The algebra A, (Mat,,) becomes a left I, (g[,,)-module by

ae; _ _
Reid i, plex) - Xij = 8 k+1Xik, o (fi) « Xij = 8 jkXi k+1-

p(q") - xij=q
Using the coproduct of U, (gl,,), (via the tensor product representation) we have

(A& +ote,)

A — L. .
'O(q ).'xilj]“.‘xinjn_q xll]ln-xln]n’

n
1, . .
PeR) - Xiyjy =i Xiy gy = D Sjidert Qs )~ Xijy - Xigk Xy gy
=1

n
P (i)« Xiyjy == Xigjp ++ Xiy j, = Z(Sj/,k @Rt e Jn) Xy Xk Xy (22)
=1
Notice that the U (gl,,)-submodule @?:1 C-x;j (i=1,...,n)is equivalent to the vector repre-
sentation C".
2.3. Iwahori—-Hecke algebra and Schur—Weyl type duality

The Iwahori-Hecke algebra H, (&,,) is an associative C-algebra generated by the symbols /;
(1 <i < n— 1) with the fundamental relations

hihivihi =hipihihipr 1<i<n-2),
hihj=hih; (i — j| =2),
(hi +q)(hi —q™) =0 (1<i<n—1).
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If w=s;, ---s;, is the shortest expression of w € &, then we put hy, = h;, - - - h;;. The elements
hy for w € &, form a basis of H,(&,) as a vector space. The algebra H,(5,,) acts on (CHen
by
e, R --®ej, -mw(hi)
€ Qej,, ®e; ®---Qej, Jk < Jk+15
= qilejl®~'®ej,,, Jk = Jk+1s (2.3)
€;Q--Qej, Be; ®---Qej, — (g _471)911 Q:-Qej,, Jjk> jk+1-

The subalgebra 7 (H,;(5,,)) is the commutant of p@f’ Uy (gl,)) in End((C™")®"), and vice versa
(see, e.g. [2]). We have consequently the decomposition

((Cn)®l1 ~ @(Ezsq)ﬂaf
Abn

as a U, (gl,)-module. This fact is referred to as Schur—Weyl duality.
For a given Young diagram A - n, we define

er=ex)i= ) ¢ Why, ee=e)i= Y ) Wha,
weWy (L) weW_ (1)
where W (1) are certain subgroups of &, (see [1] for definition). These satisfy the equations
d=(( X e 2= X oo
weW,y (A weW_(x)

Using e+, we can define the g-Young symmetrizer E, (T') € H,(&,,) for each T € STab(i). We
refer to Gyoja [1] for precise and detailed information on g-Young symmetrizers, and we only
give several examples here.

Example 2.1. The g-Young symmetrizers for 3-box standard tableaux are given by
Eg(m2m) = ey ((T00) = 1+ ¢~ iy + g~ ho + g 3 hihohy 4 ¢ 2hiha + g 2hahy,

By (B2) =hae— (H)hy 'es (H) =1+ ¢ 'hi = (g — g " )ha — g~ ' hihahy — hiha
— (1 =g )hahy,

E,(E) :e_(B:‘)hze+(E|:‘)h2_1 =1—ghy —q *hahy +q "hihahy,
Eq() =67(@> =1—-qh —qh —613h1h2h1 +q2h1h2 +q2h2h1,

Example 2.2. For spaces of g-symmetric tensors and g-skew-symmetric tensors representations,
we have

Ey (ML) = e4 ((n)) = Z g @, Eq<) =e_((1,...,1) = Z (—)®p,,

weS, weS,

in general.
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3. Quantum «-determinant

We now introduce a quantum (column) a-determinant det,(]a) by

det;“) = Z an—vn(w)qli(w)xw(l)l .. _xw(n)n c Aq (Matn)
weS,

Since (—1)"~"®) = (—1)*™) quantum (—1)-determinant det,([l) agrees with the quantum de-
terminant det,. We also remark that det;a) (X) = det;a)(’ X), which follows from the fact that
Ve (w) = vy (w™h), L(w) = L(w™) and X ()1 Xwmn = X1y-1(1) " Xpy—1(n) fOr any w € &,.
For the sake of convenience, we write

D;a)(jl’ e ]n) = Z al’l-”n(w)qz(w)xw(l)’j] .. '-xw(l’l),jn’

weS,
. . . (@) _ ()
for 1 < ji,..., jn <n. Wenotice that det; " = Dy " (1,2,...,n).

3.1. Quantum a-determinant cyclic modules V,(fl;

We are interested in the U, (gl,,)-module fof; = p Uy (gl,)) - det((la). The basic fact is that

every quantum «-determinant Déa)( J1,--., jn) is contained in V,(ﬁ; (Proposition 3.3). To prove
this, we first notice the following

Lemma 3.1. The equalities
p(g") DS Gro oo ju) =g Pt eI D Gy ),

n
pler) - DSV Girv oo jn) =D 8jrk1@kCis - ) DS Gt oo itk it -2 ),
=1

n
P(fi) - DS Girs o) =Y 8kt ) DO Gt itk 1 i - )
I=1

hold.
Proof. By (2.2), the assertion is verified by a straightforward calculation. O

We give some instructive example which may indicate a highest weight vector of a irreducible
representation (see Section 3.3).

Example 3.2. We have

oler) - D‘(]OI)(L 1,2) :q?(l’ 1, 2)D;a)(1, 1,1 :q((€1*82)/2,€1+81>D‘(]Ol)(l, 1, 1)

=¢D\(1,1,1),
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pler) - D (1,2,1) =7 (1,2, D (1, 1,1) = ¢! C1=/25=0 Dl (1 1, 1) = D (1, 1, 1),
pler) - DV (2,1,1)=¢{ (2,1, )DI (1,1, 1) = g!E1=/2=a1=e plo(y 1)
=q¢ 'D (1,1, 1),
and hence, we conclude that
pler) - (DV(1,1,2) = gD (1,2, 1)) = p(er) - (D (1,2, 1) — gD (2.1, 1)) =0.
These two vectors are also killed by p(e2) trivially.

Proposition 3.3 (Quantum analogue of [6, Lemma 2.2]). The equality

holds.

Proof. Let L,(f; be the right-hand side of (3.1). By Lemma 3.1, Lf,‘f‘,; is p(U, (gl,,))-invariant and

fof; C L,(Z‘;. To prove the opposite inclusion V,ﬁofg D Lfff;, we introduce the linear map

q%) : ((Cn)®ﬂ Se;,®---Qej, > D((]a)(jl,...,j,,) eLf;f; A<, jn<n).  (32)

By Lemma 3.1 again and the formula (2.1), we find that 95,(,02 defines a surjective U, (gl,)-

intertwiner such that (b,(,‘g e1® - Rey) = det,(f). Using the elementary fact that

(C)®" = & Uy (al,) €1 ® - @ ey,
we have

V) = p(Uy(al) - det™ = @) (o& (U (gl,) €1 ® -+ ® en) = DL ((C")®") D LY.

This completes the proof. O

By Proposition 3.3 and the surjectivity of the intertwiner q),(z‘f‘(; defined in (3.2), the cyclic
Uy (gl,)-module Vf,a; is isomorphic to the tensor product module (C*)®" if and only if the in-

tertwiner @,2‘2 is bijective, that is, the «-determinants D[(Ia)( Jj1, ..., jn) are linearly independent.
Namely, we have the following basic result.

Proposition 3.4. Put

Sing,, , = {oc eC | D,g“) (J1,---, jn) are linearly dependent}.

Ifa € C\ Sing, ., then the irreducible decomposition of Vfﬁ; is given as

A
Vi =D(E,)®
An
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In other words, the multiplicity m(’} () of the irreducible representation E 2 g in V,(f% is equal
to f*.

Let us look at the weight space decomposition of Vf,‘z. For each j = (j1,...,jn) €
{1,...,n}", we associate an integral weight

wi() =) e => viei€Ly (v=|{:ji=k}|).
i=1 i=1

Lemma 3.1 says that D,g“) ()= Dl(la)(jl, ..., jn) is a weight vector of weight wt(j). For conve-
nience, we put

Zn =v=vier+-+ve, €Ly |v; 20, v+ v, =n},
L ={ie{l,...,n)" |wt@) =2} (reLly.
By Lemma 3.1, we have the

Lemma 3.5. For an integral weight v € /:'n, define the subspace

V@)= Y C-Da)

iel,(v)

consisting of all weight vectors of weight v. Then the following decomposition

Vi =@ vinm

vel,
holds.
3.2. Singular points for the decomposition

By Proposition 3.4, what remains important is to study the set Sing, , and determine the

irreducible decomposition of V,({x,} for o € Sing, ,. We first give another description of Sing,, ,
as a set of zeros of a certain polynomial defined below.

We notice that D,(IO) (J1, - -, ju) is nothing but the monomial x1, - - - x,, . It hence follows that
the vectors Df,o) (j1, -+, Jn) are linearly independent (i.e. O ¢ Sing, ,) and each «-determinant

D;a)(jl, ..., Jn) 1s a linear combination of the monomials D;O) (J1---s Jn), say

D (ji.....jn= > Fagl@iin....igiji..... j))DV G0 i)

I<iy,sin<n

for some fnyq(a; ily.eesin; J1»---, jn) € C. It is immediate to see that each fn,q(a; i;j)d,je
{1,2,...,n}")is a polynomial in & and ¢ with integral coefficients.
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Consider the n" x n" matrix F,, ql@) = (F,, (85 )i je1,...nyn- The determinant
Cn g (@) :=det Fy .q(e) is a polynomial in & and ¢ with integral coefficients, and it is not identi-
cally zero because F}, 4(0) is the identity matrix. Thus we have the

Lemma 3.6. The set Sing,, , is given by
Sing,, . {oz eC | Cn qa) = }
In particular, Sing,, , is a finite set.

The cardinality | Sing, , | does depend on the parameter ¢. In what follows, for simplicity,
we further impose an assumption on the parameter ¢ that the value ¢ maximize | Sing, , | as a
function in ¢g. (It is sufficient to assume that g is transcendental, for instance.)

Let us put

Ao — (T .
Fq (a) := (Fn,q(a» 1 J))i,jeln(k)
for an integral weight A L,. Then, by Lemma 3.5, the matrix Fn,q (o) is a direct sum

Fog@) ~ P F@
rely

of the smaller matrices qu (a) because Fn,q (s 05 j) = 0if wt(@) # wt(j). Here, for given square

matrices A and B, we write A~ B when B = PAP ~1 for some invertible matrix P. If we put
C) (@) =det F} (), it is clear that

Cog@) =[] Ch@). (33)
rely

The following lemma is immediately verified.

Lemma 3.7. If (A.&;) = (i, €0)) (1 <i < n) for some o € &, then Fia) ~ Fq"(g)
(A, n € Ly). In particular, for each . € Ly, there exists a unique dominant integral weight A € Ly
such that F(;‘(oc) ~ Fq” ().

Consequently, together with (3.3), we have

Sing, , = | J{eeC|Ch@)=0}= |J {eeC|C )@ =0}.

reLl, reLdom

Here Ed"m is the set of dominant weights in L. We will regard a dominant integral weight
A=Aé1+ -+ A& € Edom as a partition (or a Young diagram) (A1, ..., A,) I n. Also, we
sometimes write A - n to 1nd1cate A€ Edom

It seems quite difficult in general to determlne the polynomials Cg C* () as well as the matrix

Fq)‘ (o) explicitly. Therefore, any characterization of the matrix F, ; (Ol), for instance, either by
difference equations or in the framework of R-matrices would be interesting (if any). From this
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point of view, the following property of the matrices F. (;‘ (o) is considerably remarkable. (See
Examples 4.14, and 4.17 in Section 4.6.)

Proposition 3.8. The matrix F qk (o) is symmetric.

Before proceeding to the proof, we prepare several convention. We associate a sequence

Al X A

kG = (k0. ) = (122 € (b

to each integral weight A = A1e1 +Azxe0 4+ -+ Apép € Zn. We define a right G,,-action on I, (1)

by i% = (ig(1), - - -, lom)) for 0 € &, and i = (iy,...,i,) € I,(A). Notice that the right action

I,(A) G, is transitive and the stabilizer of k(1) is the Young subgroup &, . Therefore we have
(M) =6,\&6, andlor I,(A)=k()-&,.

Thus we have another expression

f;(oz) ~ (f;(oz; 7,0))

7,0€6,\6,’
where we put F;(a; T,0):= Fn’q(a; k()T k(A)9).
Proof of Proposition 3.8. For convenience, we put
Xi(8,0) 1= Xg (ko) Xg ko)

for g € G, and 0 € G,\S,,. We also define f,f’jg (A) by

"OXig.0)= > fE,00Xe(l,7)
IEG)\\GVL

for g € G, and o0, T € 6, \G,,. It follows that

F;(a; 7,0) = Z oz"_“”(g)ffg()»).
8€6,

Suppose that a permutation g € G,, and a simple transposition s; satisfies the condition £(gs;) >
£(g), which is equivalent to the condition g(i) < g(i + 1). It follows that

q ' Xi(g,05:), ko iy =ko(i+1)s
Xy (gsi, o) =1 Xi(g,0si), ko (i) < ko(i+1),
Xi(g.05) —(q—q DXk(g,0), ko) > ko(i+1)-

This yields the relation

89 (W) =60(0,1) [ (W) +61(0,0) fE a5, (V)
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where we put

Bo(w. i) = { 1—q%,  kuwi) > kwii+1)s 01 (w. i) = { 1,  kwi) = kwi+),
’ , otherwise, ' q, otherwise.

Therefore, for a given permutation g =s;, - - - 5;, of length /, we have
SipreSiy i, ..., 0] x
L) = e . .0 )6 o
7,0 ( ) Z k (]1, i ) r,asl—“~--sijll
G D €{0,1Y !
by induction. Here we put
o S . SN o . J /S
Ok (jl, ' G> =0 (o, 11)9]2(051.1 , 12) -0, (asi1 S 11),

5* ._{1, 0l e @,
7,0 "7 .
0, otherwise.

‘We notice that

. J1 Jp=1 =\ _ g, Ji i .
0, (‘”il S, ”p) =0j, (‘”il TS, ’lP)

foreach p=1,2,...,1. It therefore follows that if t‘lasijll . ~si]l.l € G,, then

o i],...,i[‘ _n. . ) Jj1 o . J1 Ji-1
O <j1,-..,j1’0> —9]1((7,11)0]2(0si1 ,zz)u-@]l(asil R ,zz)

=0 (US{I,il)ejz(USij;lséz, i2) -0 (Usijll "'si{l’ il)

i ip?

=0;,(t,iN0j_, (tslz’I'I, il—l) -0, (ts:j’ g il) = O (

i, ..., 01

Jla-~~aj1’

935

_1 ~ ~
This immediately implies that ff, (1) = f5. (1), and hence the symmetry F}, = F follows

as we desired. 0O

3.3. Highest weight vectors in Vf,‘f()]

The aim of the present subsection is to construct a set of vectors {v("‘)(T) | T € STab()),
AbEn}in Vf,ofg satisfying the following conditions: (a) if 7 € STab(A), then v(*)(T) € Vi,a; A),
(b) each v@(T) is killed by p(er) (1 <k < n), (c) V,(ﬁ,} = @M{Zﬁsmmp(u,,(g[n)) .
v @ (T)}. To achieve this, we first construct such vectors v® (T) for « € C \ Singn)q, and then

extend the definition of them to any « € C. So, we suppose that o € C \ Sing, , for a while.

For a quantum «-determinant D((IO‘)( Jis .-y ju) and by € Hy(6,,), define
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DLt eos ) - 7@ (i)

D;a)(jlv°"7jk+17jk7""j}’l)’ jk<jk+1»
=1 47D G, ., Jn)s k= Jkt1s
DGty ooy dists dbs o os ) = (@ =@ ID Gty oo )y k> it

Each 7@ (k) is extended as a linear operator on V,(ff; and defines a right ‘H,(&,)-module

structure on V,(f{;

Remark 3.9. When « € Sing, ,, we cannot extend 7@ (hy) to a linear operator on V,(f; as we
see in the following example: When o = m € Sings ,, we have a nontrivial linear relation

D@ (1,1,2) + (1 - @)D (1,2,1) — gD (2,1, 1) = 0.
However, since

D (1,1,2) - 7 @) =¢7' D (1,1,2), D (1,2,1)- 7@ (h1) = D (2,1, 1),
D (2,1, 1)-w® (h)) =D (1.2.1) = (¢ —q~ ") DI (2. 1, 1),

it follows that

D (1,1,2) - 7 () + (1 —g)D (1,2, 1) - 7@ (h1) — gD (2.1, 1) - 7@ (hy)

_ (=g -g+4
q(1—q—q%

(DP(1,1,2)+ (1 =)D (1,2,1) — gDV (2.1, 1)) #0,
which means that 7 () (h) cannot be extended to a linear operator on Vgaq) when o = m €
Sil’lg:;’q .
It is directly checked that
O\ (ej, @+ ®ej, - w(h)) =D (1. .. ju) - 7@ (i),

Hence, each operator 7@ (hy) commutes with the o Uy (gl,))-action. In particular,
x@ (H4(S,)) is the commutant of p (U, (gl,,)) in End Vf,“; and vice versa.

For a standard tableau T € STab(}) of size n (A - n), we define j(T) = (ji(T), ..., jo(T)) €
I,(2) by
Jp(T)=i & the number written in the (i, j)-box in T is p. 3.4

We set

v@(T) =D (1)) 7@ (Bg(T)) € V) () (T € STab()),
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where E, (T') is the g-Young symmetrizer for T (see Section 2.3). This is a highest weight vector
of weight A. By definition, each vector v® (T') has an expression

V(M= Y 05D (k()7)

UEG)L\GH
= > { > Q%(g)f;(a;r,cr)}Df,O’(k(x)’) (3.5)
IEGA\Gn GEG}L\GH

for certain polynomials Q%.(q) in q. For later use, we define the f * x |6, \&,,| matrix éfl (g) by

)
0,(q) = (Q(TT"(Q))TGSTab(A),aeGA\Gn' (3.6)
Similar to the classical case, the vectors v@ (T) for T € STab()) form a basis of the subspace
W) ={ve V@0 |ple) - v=0(1<k<n)]

consisting of the highest weight vectors of highest weight A. Therefore, the cyclic module
pUy(gly)) - v@(T) is equivalent to Eﬁ’q for each T € STab()) and we have

v =P P o) v ).

A=n T eSTab())

In particular, every quantum «-determinant D;a) (i1, ..., ) is written in the form

D ir,....in=>_ > p@ M) v(T) (F3a(T)elyaly). (3.7

AM-n T eSTab(n)
Here we notice that the right-hand side of (3.5) makes sense even if « € Sing,, ,, though the vec-

tor v® (T) is defined only for a € C \ Sing, ,. Actually, it is a linear combination of monomials

X1i, - - - Xni, Whose coefficient is a polynomial in «. So we extend the definition of v@(T) for
any « € C by the expression (3.5).

Lemma 3.10. The vector v\ (T) is a highest weight vector in V,(f; () whenever v'®(T) # 0.

Proof. By definition, each vector p(ex) - v@(T) is a polynomial function in «. Therefore, the
property p(ex) - v (T) = 0 is equivalent to some algebraic equation on «. Since any complex
number in C \ Sing,, , is a root of the equation, we have p(ex) - v@(T) =0 for any o € C. This
completes the proof. O

The formula (3.7) is valid for all « € C by a similar ‘polynomial’ discussion. It hence follows
that

Vi = @{ DRI ZACIE v(“)(T)}

A ¢ TeSTab(h)

for any a € C. We notice that {v® (T)}7csTab(s) generates W,if",} (A) and mg(a) =dim W,g?‘q) (A).
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3.4. Explicit decomposition of V;?;—Examples forn=2,3
Example 3.11. Let us see the simplest case, the U, (gl,)-module V;a;. Since

D (1. 1)=1+)DP1. 1),  D1,2)=DP(1.2) +agDP (2.1),
D2, 1)=agD(1,2)+ (1+a—ag®)DP2.1),  D¥(2.2)=1+ax)DP(2.2),

we have
l1+4a O 0 0
~ 0 1 o 0 ~ ~ ~
Pg@=1 ag 1+a q_aq2 0o |~ F’IQ’O) (@& F D @ Fq(O’Z)(“)’
0 0 0 1+«

Caq(@) =det Fy (o) = (1 + )3 (1 — ag?) and Sing, , = {—1,472}.

If o € C\ Sing, ,, then we have ng = Egzé o E(zféll) by Proposition 3.4. Each irreducible

component is explicitly written as
2 i el el
Eé; :0 r CD(2,2) - C(gD¥ (1,2) + D\ 2, 1)) ?1 CD™(1,1) —= 0,
e
E{":0 < €(D{(1,2) gD 2, 1) = 0.

The highest weight vectors of these modules are

D@1, )= +a)xix.,  D(1,2) = gD (2, 1) = (1 — ag?)det,.

Hence the component E ;2()1 (respectively E S(’]l)) disappears if @ = —1 (respectively a = g ~2).
We have thus
@) —_
Ez’q, oa=-—1,
(@) ~ (11 _ 2
Vz,q: Ez,q , a=q -,
@) (1,1 -2
Ez,q®E2,q , a#x—1,q7"°.

Example 3.12. Look at the U, (gl3)-module Véa; If we put

v =D, 1, 1) =1+ @)1 +20)x11x21x31,
oY =D (1,1,2) + (1 - 9)D(1,2,1) —¢D* (2,1, 1)
=(1+a)(1+ (g —¢* = ¢°)a) (x11x21332 + (1 — @)x11x22X31 — gX12%21X31),
v =D (1,1,2) - 1+ @)D (1,2,1) + gD (2,1, 1)

= +a)(1+ (=g — ¢ +¢°)a) (x11x21x32 — (1 + @)x11X22%31 + gX12%21X31),
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v = DI (1,2,3) =g D™ (2,1,3) =g D (1,3,2) = ¢’ D (3,2, 1) + ¢° D (2,3, 1)
+4°D{(3,1,2)

= (1 - 2aq* +20%¢* — @q®) det,,

then the U, (gl3)-cyclic span of these vectors gives Vg“; (see Example 3.2). Therefore we have

(1.1,1) _
E3,q ’ oa=—1,
2,1 1,1,1
(ESH®2 0 BV, a=—1/2,
@~ | p® o gD 4 gL 2 3
Vig= Esg®Es, ®E;; ", a=1/q*>+(q—q),
3 2,1 _
ES, © (ES,))P, 0=+ g2 g T A —dg /4,
E?; & (Eg;))632 @ Eglql D otherwise.

In other words, we have

0, a=—-1,-1

mg?))(a) — . )
1, otherwise,
0, a=-1,
mEV@ =11 a=1/(g*+(q-q¢>).
2, otherwise,
m(l’l’l)(oe)z 0, Ot:(Zq—2+q2:|:‘/q4+4—4q—4)/4,
4 1, otherwise.

It also follows that

Sing. — 1 1 29 +q* £ gt +4— 49~
ing3 , =1—1, 2 .

22+ (q—¢%)

Notice that 0 < méz’l)(a) < f@D when a = 1/(¢% & (¢ — ¢*)). In particular, this shows that
the classical result cannot be recovered from the quantum case by letting ¢ — 1. This is because
the elementary divisors of the g-content transition matrices for generic ¢ (defined in Section 4.2
below) are different from those of the 1-content transition matrices; see Example 4.1. See also
Example 4.15 for the g-content discriminants.

4. Irreducible decomposition of Vﬁ,"f; for « € Sing,, ,

In this section, we investigate the cases where some irreducible factors of the decomposition

of the cyclic module fof,; may collapse.
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4.1. g-Content discriminants

If @ € Sing,, PR then there exists some A F n such that mz(a) <f 2 by definition. To describe
the sets

Sing) := {a € Sing, , | mj (@) < 4}, Sing, (@) := {i € L3™ | m} (@) < f*}.

we introduce certain polynomials called the g-discriminants: Let A € Eﬂom and «, 8 € C.
When g € C\ Sing, ,. each vector v®(T) is written as a linear combination of the vectors

{vP(T)} resTabin)

vy = > Fle ;S TP (S) (T STab)).
SeSTab())

We introduce a f* x f* matrix F{;‘ (o, B) by

A A .
Fyle, )= (Fg(@.8: 5. 7)) rcsmapoy-

We call F;(a, B) the g-content transition matrix of . The function C} (a, B) := det F}(«, B)
of « is called the g-content discriminant for A with reference point 8. If 8,y € C\ Sing,, ;.

then F)-(a, B)F} (B, y) = F}(a, y) and C)(a, B)C) (B, y) = Cj (e, y). In particular, if «, 8 €
C\ Sing, ,, then C;(a, B) = Cg(a, 0)/C;‘(,3, 0). In what follows, we simply write Fqk(oz) and
C ;‘ () instead of F, qA (o,0) and C [’]\ (, 0). By definition, we have

mj (o) = dimg W% (1) = rank F} (@),

and hence
Sing; = {a € C| C)(a) =0}.

Example 4.1. Since

VO (EE) = A+ o) (1 + o —2a¢* )0 O () + ag(1 +a) (1 — ¢*)v O (FP),

v @ (EF) = —ag ' (1 + ) (1 — ¢2) v (E2) + (1 + ) (1 — )@ (FR),
we have
o ( A4+a)(I+a—20¢% ag(l+a)l —q2)>
Fg= () = —1 2\2
—aqg (1 +a)(1—g°) I4+a)(1—w)
and

CPV(@) =det F*V (@) =1+ )*(1+ (¢ —q> —¢°)a)(1+ (=g — ¢° +¢”)).
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We note that the elementary divisors of the transition matrix F @D («) are given by

{(1+a)(1—a),(1+a)(1—a), g*>=1,
(I+a),A+a)(1+(q—q*— g1+ (—q—q*+q¢>a), ¢>#1.

The relation between the two collections {C; (@)}, and {5 2 (a0)},. is given by the

Lemma 4.2. The equalities

rankf(f(a):ZKwranquA(a), 5};(05)=HC;‘(0()K“‘
An A=n

hold where Ky, is the Kostka number (we refer 5] for the definition).
Proof. We define

Vi O =Ug (@) - WiQO) N H® VI (T ) = Uy (gl,) - v (T) 0 H,
where

H®:= Y C-D@(k(u)?)
ceG,\G,

is the subspace of Vf,‘f; consisting of all weight vectors of weight x. By definition, we have

H? =P Vi ).
AFn

Since W,ffyq) (M) = restanoy C- v@(T), we also have

ViaOamw= Y VT, .
T eSTab())

Notice that

E} ,(w), v@(T)#0,

Ve (T, p) =
" 0, 0@ (T) =0,

where E 2 ¢(w) is the weight space in E ﬁ o of weight . We denote by (7 the intertwiner be-
tween fof;(T, w) and Eﬁ‘q(u) when v®(T) £ 0. We also put (7(x) =0 € Eﬁ’q(,u) for any
Xe€ Vf,‘f[)[(T, ) when v (T) = 0. The map

Vi G ) D V(T 1) 3 x> 17 (1) @ vUT) € By 4 (1) ® W% ()

defines a linear isomorphism, and hence yields
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VE o) ZE) () @ W ().

Consequently, we have the decomposition

H = P E; (0 @ Wi 6
AFn

as a vector space. Since dim Ez’q (1) = K., we have the lemma. O
As a corollary, we also have the

Lemma 4.3. The equalities

~ ~ (=1
rank Fr(@) =Y K{ Vrank Fi@),  Cha) =[] Clem
ukn ukn

hold where Ki;l) is the reverse Kostka number (i.e. Zv,_n K, KV =)

By Lemma 4.2, we notice that

Cr@=Ci@ x [] cre®n,
An
AFER

which readily implies that

Sing, , = U{ae@ | 52(0{):0} = U{(XG(C | C;‘(a)zo}.

Abn An

Namely, the two collections { F () },-» and (F 7 (@)}2-n of matrices have equivalent information
on Sing,, ..

4.2. Classical result—A review

We recall the result of the classical case [6]. The set Sing, | is explicitly given by

1 1
Singn’lz{il,ii,...,i }

The irreducible decomposition of V (k =1,2,....,n—1)is

Vs @E. vRE @ @

An Abn
A<k )\’lgk
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1/k)

In other words, the multiplicity m’} (o) of the Schur module E ? in Vflil is given by
1 Ao <k, 1 oM <k
m?(——>={f PR m?(—>={f - sk 4.2)
k 0, otherwise, k 0, otherwise.

In particular, since f* = f*, we see that m?(—%) = m?l(%), where A’ denotes the transposition
of X as a Young diagram. Thus, in the classical case, each isotypic component either exists with
full multiplicity or disappears completely. Using the (modified) content polynomial

Mayi= [ (146G =)

(i,j)er
of a Young diagram A, one finds that (4.2) is equivalent to

o HMa) #0,

A _
) = {o, Ha) =0.

In the quantum case, if o € Sing, ., then we have mé (a) < f* for some A. In contrast to the
classical case, however, it could be that mé (v) # 0 as we see in Example 3.12.

4.3. Symmetric and skew-symmetric cases
The cases where A = (n) and (1, ..., 1) are much easier because the respective multiplicities
mij‘ () of E ﬁ ¢ in the irreducible decomposition of fot), are always either 0 or 1. Actually, we

have the following.

Proposition 4.4. The highest weight vectors for (n) and (1,...,1) in Vﬁfz are

v("‘)():< )3 an—Vn(U))v(O)()’

eSS,
1
v(co() _ < )3 O,n—vn<a>(_q2)€<a>>v<0><)_ 4.3)
eSS,

In other words, the corresponding q-content discriminants (and/or q-transition matrices) are

C;n)(a) — Fq(n)(Ol) — Z Oln_V”(G), C(gl ,,,,, 1)(0’) — Fq(l ,,,,, U(C() — Z an—un(a)(_qZ)f(U)'

ceS, 0e6,

In particular,

0 _1 L
m;")(a)z{ ’ 20 T p=1
1, otherwise,

o=-1,

n—vy(0) (_,2\¢(0) —
il ”(a)={0’ Srce, o7 A0 (44)
. otherwise.
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Proof. The first equation in (4.3) is straightforward. To prove the second one, notice that

D,(]a)(l, 2,...,n)- 7@ (E4 (1)) is contained in the one dimensional invariant subspace C - det,,
and hence it must be a scalar multiple of det, . The scalar is given by the coefficient of x17 - - - xpp
in

(]
v(“)() =D (1,2,....n) - 7@ (Eq<)) = Y "D (w). ..., wm)

wes,

DM Y @O D iy Ko -

wes, oe6,

The coefficient is equal to
_ - [4¢
Z (_q)ﬁ(w)an Vn (a)qﬁ(o) _ Z o' vn(a)(_qZ) o)
w=0eS, ceS,

as desired. The last statement (4.4) about the multiplicity mf;')

fact

(o) follows immediately from the

n—1
Z o=@ — 1_[(1 + ko)
k=1

ceS,

(see, e.g. [6] or [9]). This shows the proposition. O
As a corollary, we have the following.

Corollary 4.5. Define the set prSing,, , by prSing, , = Sing,(;') U Sing,(i1 """ Y Then

} U {a eC ‘ > (_qz)e(w)a”’”"(“’) = 0}

wes,

1 1

prSingn’q = {—1, 5

, —

n—1
and prSing,, . is a subset of Sing,, .

We call the singular points in Sing;") classical and the one in Sing((]1 semi-classical.

‘We notice that prSingn,l = {*l1, :l:%, e, :I:ﬁ} = Singn,l in the classical case. However, it
could be true that Sing, , 2 prSing, , in the quantum case (see, e.g. Example 3.12). When
« € Sing,, , \ prSing, ., we call it a quantum singular point.
4.4. Several explicit points in Sing, ,

We use the following lemma.

Lemma 4.6. (See [4, Lemma 2.1].) For any g € &, the equality

Z o'V (w8) — gn—va(wog) (] +a),,,(1 + (k- 1)0[)

weSy
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holds. Here &y, is regarded as a subgroup G ={w € G,; w(x) =x, x >k} of &, and wq is
the element in Gy (depending on g) such that v, (wog) = v, (wg) for any w € Sy.

The following lemma plays a key role for understanding the multiplicity mg (—%).

Lemma 4.7. Let k be a positive integer less that n. If o = —%, then

D\ (ar,....am, 1" b1, . b)) =0 (4.5)
k+1
k+1 :
foranyazi,...,an, by, ..., by. Here 17! denotes the k + 1 consecutive sequence 1, ..., 1.
Proof. Let I, ; be the set consisting of finite sequences (i1, ..., i) € {1,2,..., n}¥ such that the

entries are distinct. We write i N j =@ if i € I, ,, and j € I, ; have no common entry. For any
pairi = (i1, ...,im) € In.m and j = (j1, ..., ji) € I, such thati N j =@, we put

Wu(i, j)={we6, |wx)=i, A1<x<m), wn—I+y)=j, 1<y<D}.
Then we have

D;a)(al,...,am, 1k+1,b1,...,b1)

= > @G O ay  Xumyan XD Xkt DXL Dby Xy

wesS,
—Vn 14
= X D @G Y X, X )1 VG DIy by
i=(ifserim)€lnm WEW, (i, J)
J=1se i€l g
inj=o (4.6)
where we suppose that m + (k + 1) 4+ [ = n. To prove the lemma, we show that each sum
Z an—vn(w) L(w) ... . . . 4.7
q Xiyay *** Xigap Xwm+1)1 " Xwm+k+1)1Xj1by = Xjiby 4.7)

weW, (i, j)
in (4.6) has a factor (1 + «) - - - (1 + k«). Consider the group
Gn(m,l):{we6n | wkx)=x (x <m, n—l+1<x)}.

The group G, (m, 1) acts on W, (i, j) from right transitively and faithfully. We take the unique
element wog € W, (i, j) such that wo(x) < wo(y) form + 1 < Vx <Vy <m + k + 1. Then we
have W, (i, j) = wo - ©,(m, 1) and £(wow) = £(wp) + £(w) for w € &,,(m, ). Therefore, the
sum (4.7) is rewritten as

n—vy (wow) , £(wow
Z o )61 (wo )Xila, © Xiam Xwow(m+1)1 *** Xwow(m+k-+1)1Xj1by =+ Xjiby
we&,(m,l)

— 4
= ( Z o U"(wow)>q (wO)xilal s Xiam Xwo(m+1)1°** Xwo(m+k+1)1Xj1by * = Xjiby -
weS,(m,l)
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Since v, (-) is a class function and &, (m, ) = gS;41g~"! for some g € S, we have
Z n—vy (wow) _ Z n—vy(wogwg™") _ Z n—vy(w-g~ wog)
o = o = (04 ,

weS,(m,l) weS41 weSj+1

which indeed has a factor (1 + «) - -- (1 4+ ka) by Lemma 4.6. Thus we have the lemma. O

Remark 4.8. Even though there are k + 1 identical columns, if they are not consecutive like
(4.5), then Lemma 4.7 does not hold. For the classical case, such a consecutiveness condition is
unnecessary to hold the vanishment. See [4].

As a corollary of the lemma above, we have the

Corollary 4.9. If 1+|M >1— g then mj(—1) =0.

Proof. Recall that the vectors v (T) = D\ (j(T)) - 7@ (B, (T)) € V*) (1) for T € STab(1)

of size n (A F n) form a basis of the space of highest weight vectors W,i“,} (A) in V(O’) (A). Here
J(T) = (i(T),..., ju(T)) € I,()) is defined in (3.4). Now it is easy to see that the 1nequality
A

1+Ik| >1-— lik can be written as k(JA| — A1 4+ 1) < A1. In other words, we have

k(s 7o # 1) 41) <[ Jp) =1)]

By the pigeonhole principle, this implies that there exists at least one k + 1 consecutive sequence
1¥+1in j(T). Hence, by Lemma 4.7 the result is immediate. O

Practically, using Lemma 4.7, we can estimate the multiplicity mé (—%) for each positive
integer k more accurately if the partition A is given explicitly.

Example 4.10. The vectors

jth
D;“>(1,...,1,15,1,...,1)-71(“)(1@()) (j=2.....n)

generate the space of highest weight vectors W,§f’q) (A) when A = (n — 1, 1). Since D(a)(l |

jth
2,1,...,1) #0holds only if n —k < j <k+1,wehavemy """ (~1) < max{2k+2—n, 0}.In

particular, we have m,(;l_l’l) — %) = 0 whenever n > 2k + 1. Moreover, suppose k =n — 1. Then

2k+2—n=n>f M—p—1. Therefore, in this case, there is at least one nonzero vector of the

jth
form DY(1,...,1,2, 1,..., 1) which is killed by the ¢-Young symmetrizer 7 ® (E, (BELE).
For classical singular points, we have the following general result.

Theorem 4.11. It holds that
1 ~
Sing, , (7) ={re L™ | (r, e1) >k}

for each positive integer k.
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Proof. If A{ > k, then there exists a standard tableau 7" € STab(A) such that the highest weight
vector

v@(T) =D (1 s, %) - 1@ (Eg (1))

vanishes when o = —% by Lemma 4.7. Conversely, suppose A € Singn’q(—%). Then, since

mfj (—%) < fk, there exists a standard tableau T € STab(A) such that v(_%)(T) = 0. Since we
have the expression

WM = Y 05Dy P (k1))

0eG;\G,

by (3.5) where Q% (g) is a polynomial in g, the identity v _%)(T) =0 remains true at g = 1. It
hence follows that A € Sing,, ;(— %), whence A1 > k by (4.1). This proves the theorem. O

Remark 4.12. Let ¢ = a(q) € Singn,q. Then there is an integer k (1 < |k| < n — 1) such that

alg) — % when g — 1. This is because the algebraic function «(g) is a root of some g-content

discriminant and this discriminant reduces to a content polynomial when g — 1. Therefore, there

is a canonical map Singnyq(a(q)) — Singn,l(%) when a(g) — %, that is, A € Singn’q(oz(q))

implies A € Singn’l(%) (g — 1). However, the limit formula lim,_, mg(a(q)) = m’l\(%) does
not hold in general.

By (3.5), we see that m} (@) = dim W,% () = rank 0} (¢q) /" (&), where the matrix 0% (q) is
defined in (3.6). Since F {; (o) is the identity matrix when o = 0, we have in particular

rank 0} (q) = dim W) (1) = f*.
Therefore, we obtain the following rough estimation of the multiplicity

£+ rank Fyr (o) — [6,\8,| <mj;(e) < min{ f*, rank F*(@)}.

Since det(([l) equals the quantum determinant det,, we see that V,([ql) defines the one dimen-
sional representation. It follows that

~ 1, =g+ +ep,
rank F(—1) = o o
a 0, otherwise.
Hence, in particular
Sing, ,(—1) = Lo\ {eg + -+ + &5} = {2 € L0 | (. e1) > 1}

as we stated in Theorem 4.11 and mf]‘(—l) =0for A € Singn’q(—l).
From these observation with the facts from Examples 3.11 and 3.12, we naturally reach the

Conjecture A. A singular value o € Sing, ., is a quantum (i.e. o ¢ prSing, ) if and only if
mz (o) # 0 forany A € Eﬂom.
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Remark 4.13. The following question comes up naturally but is nontrivial: What can one say
about the relation between the multiplicities of the roots of g-content discriminants and the mul-

tiplicities of the irreducible subrepresentations in VS,O,‘; ?
4.5. Uy(gl,), Hy(S,))-bimodule Vi)

We define the representation 7 of the algebra H,(G,,) on the space Vf% =i n<nC
X1ji " Xnj, BY

X1jp+ o Xk Xk Ljr * Xy D) = X1y Xk L jy Xk jigy =~ Xy -

It is immediate to see that the 4, (gl,)-intertwiner @,E?;:((C”)‘Xm — V,(f)q is also Hy(6,)-
equivariant. Hence 7 (H,;(&,)) is the commutant of o (@, (gl,)) in End(V,S%) by Schur—Weyl
duality and vice versa [2] (cf. [10]). Therefore, as a (U, (gl,,), H4(S,,))-bimodule, we have the
irreducible decomposition

vfg; ~ @ E, RM) . (4.8)
Abn

where M ﬁ ¢ 18 the irreducible H, (&,)-module corresponding to the partition A.
Consider the (U (gl,,), H4(S,))-cyclic module

Vi = p(Uy(gl,) - det’™ - 7t (Hy(S,)) C V).

This is the smallest 7 (H,(S,))-invariant subspace in V,(BZI containing V,(f;. By (4.8), every

A
n,q

the irreducible decomposition of the (U4, (gl,,), H, (&, ))-bimodule V,(,‘f‘q) is given as

irreducible component in V,(,'f‘q) is of the form E; XM f‘l ¢ With multiplicity at most one. Hence

~ A 5
V,(,“q) = EB E, XM,
rEY, (@)

where Y, () is a certain subset of partitions of n. Therefore, if the multiplicity mg(oz) of the
irreducible representation E ﬁ g 10 V,(f,z is not zero, then the irreducible component E ﬁ XM ﬁ q

does appear in the irreducible decomposition of V,S‘f‘q) . Thus Conjecture A is restated as the fol-
lowing form.

Conjecture A’. We have V%) = @, ,, Ei , R M}, if and only if & € C\ prSing, .

We note that prSing, | = Sing,, ;. Hence, the conjecture can be regarded as a quantum coun-
terpart of the fact that Ve =~ D, E;};,l X Mﬁ’l if and only if @ € C \ Sing,, ;.

n,1 —



K. Kimoto, M. Wakayama / Journal of Algebra 313 (2007) 922-956 949

4.6. Examples of q-content discriminants

We here collect several examples of g-content discriminants with some of their corresponding
g-transition matrices.

Example 4.14. The matrix Fq(z’])(a) corresponding to 5;2’1)(05) in the example above is given
by

1 aq ag?
FPV@=1+a) | aq 1 g2 —q%)

ag® ag2—q? 1420 —2aq?

The matrix fq(l’l’l)(a) corresponding to 5(51’1’1)(01) is also given by

1 aq ogq ag’ a’q?  o?q?

ag i d*¢* g’z agd  agy
3

FALD oq 052612 Y1 Olqz)/S aqgyn oqg-

q (@) = 3 2 2 )
oq oxgTys ogqTys Vs V4 Y4
o’q*>  aq®  agqyi v v ag’ys
o’q*> agyi agd o ag’ys oy

where y1, ..., 5 are given by

yi=lt+a—ag’, n=lta—ag’, p=l+a-g’,
ya=aq(2+ 20 —2¢* — 2aq”* +q%),
ys=1+43a+ 20 —4-ocq2 - 4052(]2 + 2aq4 + 2a2q4 - aq6.

If we put
3 q q —q —q 1
> 1—g? q —1+44* q —q
q° q 1-4° q —14+4¢*> —q
P: ’
1 —q —q —q —q -q°
q 0 1—q—q? 0 l+q—q* ¢*
g 1—-qg—q* 0 l+q—4¢* 0 q°

then we have
111 —d + o+ — -
P Fq( )(O‘)P—dlag(a@)a0‘(2,1)’0‘(271)’a(z,l)va(z,l)’a(l,l,l))a

where a3) = (1 + ) (1+2a), a5 1, = 1+ )1 +ag?(1 £ (g —¢~)) aq.1ny =1 —2aq* +
202q* —aq®.
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Example 4.15. The g-content discriminants for 3-box diagrams are given by

Cf)(a) =(1+a)(1+2a),
CPP@=0+a(1+(¢-¢*—¢)a)(1+(-¢ —¢* + ")),
Cél,l,l)(a) =1 —2aq* +2a%¢* — aq®.

These are obtained by the equations (Lemma 4.2)

=Y.  CFV@=cP @),

CO1D (@) = CO @ 2D @2V (@),
and C L’]\ (o) =det F qx () are calculated from the results in Example 4.14.

Example 4.16. Using the fact that

E,(BB) =1 +q '+ (6]71 —q)hy +q 'y — g hihahy — g hohshy — hiho
+(¢72 = 1)hah1 + (¢7% = 1)hahs — hshy — g *hahshahy — g *hihohihs
—q 'hihahs — g 'hshahy + (77 — ¢~ ') hahihs + qhyhohihshy
+qhahshohihy + g 2hyhs + g*hahyhshy + hhahyhshahy

By (Bf) =1 — ghi — ghs +q~ "' mhahy + g~ hahshy — (g7 — g)hihahshahy
— g *hahy — g *haoh3 — hihahshy + (g~ — 1)hahshaohy + (g7 — 1)hihohihs
— hihshahy +q Y hihohs + g~ hahahy + (q_l —61_3)h2h1h3 —q ' hihahyhshy
— 4~ 'hahshahihy + g*hihy +q~hahihsha + hihaohyhshahy,

it follows that
v(“)() =1+ a)(l + 20 4+ a® = 3ag® — 30%¢% + ZanG)U(O)()
2
+ag(l+a)(1-¢*) v O(BR),
v("‘)() =—aq ' (1 -1 +a)(2+a—q¢* —dag® + ¢* +ag*)v O (FB)
+(I+a)(l —a —a? +3a%¢* — ag* — 20%¢* + aq®)v @ (EB).
Hence the g-transition matrix Fq(z,z) (o) is given by
(1+a)
< 1420 + a2 — 3ag? — 3a2g? + 20240 ag(1+a)(1 —g¢%)? )

—aqg 1 -2 +a—q? —dag? + ¢* +aq?) (1 —a—a?+302¢> —ag* —202¢* + ag®)

and hence the corresponding g-content discriminant CC(IM) () = det Fq(m) (@) is
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— 2q2(1 — qz)(l —5¢>+3¢* —¢% + 618)013 — q2(1 - q2)2(1 —3q¢% + 5q4)oz4).
Notice that the transition matrix Fq(z,z) () does become a scalar matrix (1 —a?) I, if weletg = 1.

Example 4.17. The matrix I?,]G‘l) () corresponding to 5,;3’1) () is given by

(14 2a) aq(l +2a) ag?(1 + 2a) ag3(1 4 2a)
aq(l + 2a) 14+ a+ag? g2+ 2a —g?) ag?(142a)(2 —¢3)
ag?(14+20)  ag+2a—g?)  142a0+222¢2(1—¢%)  ag(1+22)(3 —24¢%)
ag3(1+20) ag?(14+20)2—g2) agl+20)3—29%) (1+2a)(1+3a(l —g?))

(14 a)

Further, the matrix ff’z) (av) corresponding to 5;2’2) () is given by

(1+a) ag(1+a) aq?(1 +a) ag?(+a) 230 4+a) 2a2¢*

agl+a)  1+ag? aqy agy ?¢*G—q% ag’n
U to ag*(1+a) agy Va 20%¢%(2 - ¢°) aqys aqys
aq’(1+a) aqy 202¢%(2 - ¢%) Va aqys aq’ys |
g1 +a) «?¢>G—q% aqys aqys 7 aqve
202q4 ag3yr ag?ys ag?ys aqye 8
where y1, ..., yg are given by
n=2-q¢"+aq’*,  p=1+3a—-2a¢*, p3=1+20+¢*—aq’—q",

y4=1+2a—2aq2+aq4, y5=2+4a—q2—3aq2,
V6 = ocq(4 + 60 — 4q2 — 60[6]2 + q4 + aq4),

yr=14+a+ 2aq2 + 2a2q2 - 3aq4 - 2a2q4 + aq6,
yg=1+450+ 60 — 40(6]2 - 60[2612 - 2a2q4 + 20526]6.

Example 4.18. We have

CiP(a) = (1 + ) (1 4 2a) (1 + 3),
COHV(@) =1+ o) (1+20)*(1 - ¢*(2 - ¢°))
x (14 (1 —¢%)a — ¢*(4 — 54> + 4¢*)a? — 2¢%(2 — 4¢* +2¢* — ¢°)Y),
CPP(@) =+ (14 (1-3¢> —¢* +¢%)a —¢*(4 = 64* + ¢* — ¢° + ¢*)?

—2¢*(1-¢*) (1 =5¢* +3¢* = ¢° + ¢%)’ — ¢*(1 - q2)2(1 —3¢% +5¢%)a?).

These are obtained by the equations (Lemma 4.2)
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Glo=cP@. Y@= @ci @,

CP @ =CP @@ (@),
and C ,’]\ (o) =det F ; () are calculated from the results in Examples 4.16 and 4.17.
5. Quantum o-permanent

A theory similar to the one developed in Section 3 for the quantum «-determinants can be also
established for the quantum «-permanent defined below. We hence close the paper by observing
two examples concerning the cyclic U (gl,,)-module U ,(102 generated by a quantum «-permanent,
and give a conjecture on a ‘reciprocity’ between the multiplicities of the irreducible summands

of two modules Vf,‘f‘; and U ,(1‘)2 Introducing partition functions for the multiplicities of respec-
tive irreducible decompositions, we close the paper by restating a certain weaker version of the
conjecture (and also Conjecture A) in terms of the partition functions.

5.1. Quantum o-permanent cyclic modules U 202

We define a quantum (column) a-permanent by perg“) = det(_‘”q),1 = det;ia). Namely, we have

per;a) = Z an—un(w)(_q)—f(w)wa)l “ X € Aq (Mat,,).
wesS,

We notice that perfll) is the quantum permanent per,, . We also remark that per,(]“) (X)= per,(;") (X)

as in the case of detéa)(X ). For convenience, we put

PGt o) = ) @ (=)™ My X -
weS,

‘We notice that peré“) = Pq(a)(l, 2,...,n). Let us consider the cyclic module

U'®) = p(Uy(gl,)) - pers®,

and we also define Singf;ir] and mZ (@) per similarly to Sing,, q and mg (). By the same discussion
as in the proofs of Proposition 3.3 and Lemma 3.1, we have the

Lemma 5.1. We have
p(g") - PGty ) =g ot PGy ),

n
pler) - PO jn) =D 8k 1@k Cits - ) P Gt i Ko gt )
=1

n
PUfi) PG ) = D 85 k@h G- ) P Gt imt k1 i),
=1
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and
U= > C-PPGi....in.
1<it,eees in<n
We also define
PAGjts s dn) - 7080 (i)
P(a) . . . . . .
q Lo ooy Jkt1s Jio -+ Jn), Jk < Jk+1,
=147 PGt i) Jk = Jr1.
PGt it i o i) = (@ = a7 PE G )y k> kg
for a quantum «-permanent Pq(a)(jl, ..., jn) and hy € H4(S,) as in Section 3.3. We notice

that, also in the present permanent case, the result corresponding to Proposition 3.4 holds when
aeC\ Slngp v

Example 5.2. The highest weight vectors in U, (a) are
PO )= (1—ag ?)xnxa,  P(1,2)—qP® 2. 1) = (1 + a)det,.

Hence the component Eézgi (respectively E;ll’;)) does not appear if @ = —g? (respectively
o = 1). Thus we have

O» = 2a Oa a=— 1 >
m;Z) (Of)per = { *=4 . ml(ll'l)(a)per = { .
1, otherwise, , otherwise,

—_—

and Singge; ={-1,4¢%}.

Example 5.3. Look at the U, (gl3)-module U g‘)‘; We can take the highest weight vectors as
follows:

—4

u® = (1 -2ag7% + 2% — g~ %)xn1x01331,

(2 D=q +o)(1—(¢7" +97% — ¢ 7)) (xr1x21x32 + (1 — @)x11x22x31 — gx12X21%31),
(2 D=q +o)(1— (=g '+ ¢+ %)a) (x11x21032 — (1 + @)x11X20%31 + gX12%21X31),

uD =14+ a)1 + 2a)dety,.
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Therefore, we conclude that

E®

3.0 oa=-—1,
EY @(E(Zl))@z w=—1
Ug, = E“) OB @B, a=1/@ x4 —q 7).
(E(2 2o E“’“) 0=Q2q+q 72 £ g+ d—dg)/4,
EY) ® (ES, l>)@92 @ E"D. otherwise.

In other words, each multiplicity can be described as

0, a=Qq*+q 2+ /g +4—4q" /4,
m,(f)(a)per:{l a=(2q"+q q 9"/

otherwise,

0, a=-1,
mPV(@per=1{1. a=1/(g2£@q " —q73)),

2, otherwise,

1
1,1,1 Os Q= _17 7
m(LL )(a)per:{ . 2
, otherwise.

Hence, as a counterpart of the Sing; , for the quantum « determinant case (Example 3.12),

2'q72+ (@ =g’

- oPeT 1 1 2¢° +q7r+ /gt +4—4q*
Smglq: -1, —= 1

is the corresponding singular set Slng3 for this permanent.

5.2. Reciprocity for multiplicities between Sing, , and Singg?;

By the same calculation as we did in the proof of Proposition 4.4, we get

A
q per .
1, otherwise,

O, a:_l’_l’_”’—L’
m[({l,...,l)(a)per _ { . 2 n—1 5.1
1, otherwise.

This shows in particular that, for the permanent case, the singular points — (1 k < n) should

be also called classical. Moreover, comparing (4.4) and (5.1), we have the following remarkable
relations

m((ln)(a(q))per:mél ..... 1)((¥(q_1)), m;l ..... 1)(0[(Q))perZm;n)(a(q_l))-

Furthermore, we find the same relations in the case where n = 3 by comparing Example 3.12
with Example 5.3 with respect to the transposition of the diagram . Thus, we naturally come
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to expect the following ‘reciprocity’ (or ‘mirror symmetry’ with respect to the reflection in the
main diagram of 1).

Conjecture B.

(1) Ifa(q) € Singyg, then a(q™") € Sing, .
(2) The map

Singl’y 5 a(g) — a(q~") € Sing, ,

is bijective.
(3) Letu(qg) € Singgir]. Then the equality

A v -1
mq (a(q))per = mq (Ot (C] ))
holds for each \ € Zgom.
We note that the conjecture is true when g = 1 (see Section 4.2).

Remark 5.4. If the conjecture is true, then it follows from Corollary 4.9 that mx(—%)per =0if
)\/
] +|1)»| >1—5 + 127 - However, we notice that there is no permanent counterpart of Lemma 4.7.

Let P be the set of all partitions. Define generating functions of the multiplicities mé (o) and
m?; (@)per by

00 m
ot o) ::me(k"‘) Il _ ZZ (a) |
reP n=0 Akn
A.
o) =) ;‘?Pﬁf W _ sz (Ot)per
reP n=0 Abn

We call z&‘f;et(t, a) (respectively z‘/‘ger(t, «)) the partition function of the cyclic module V,(f‘;
(respectively Uf,‘f‘,;). Obviously, one has l?fe‘(t,a) ﬂper(t o). Ifa ¢ U —13ing, q (or o ¢
Uz, Singgir]), then it is readily seen that

]

Ot ) =00 (t ) =] |

i=1

1
1—1t

When g = 1, it is also easily calculated as

19;16[(; +— > H1—ﬂ

i=1

fork=1,2,...,00
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In terms of these partition functions z‘/‘get(z‘, «) and ﬂger(t, a), (a slightly weaker version of)
Conjectures A and B are respectively restated as follows.

Conjecture AB.
(1) If a is a quantum singular pointand k = 1,2, ..., 0o, then

1
11—

k
99t ) # ] ]

i=1
(2) The equality
081, alg ™)) = 01 (1, o)
holds for a(q) € Uf;l Sing,pf;.

As a step for approaching the conjecture, one perhaps needs to examine it first when the
singularity is classical: Calculate explicitly ﬁget(z‘, — %) and ﬁger(t, —%) for k € Z~o.
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