JOURNAL OF ALGEBRA | 卷:322 |
Asymmetry of Ext-groups | |
Article | |
Mori, Izuru | |
关键词: Ext-groups; AS-Gorenstein algebras; Frobenius Koszul algebras; Noncommutative projective geometry; | |
DOI : 10.1016/j.jalgebra.2009.02.027 | |
来源: Elsevier | |
【 摘 要 】
In this paper. we will use techniques of noncommutative projective geometry to construct examples of algebras R over a field k not satisfying the following two types of symmetric behaviors of Ext-groups: (EE) For any pair of finitely generated R-modules (M, N). dim(k) Ext(R)(i) (M, N) < infinity for all i epsilon N if and only if dim(k) Ext(R)(i) (N, M) < infinity for all i epsilon N. (ee) For any pair of finitely generated R-modules (M, N), Ext(R)(i) (M, N) = 0 for all i >> 0 if and only if Ext(R)(i) (N. M) = 0 for all i >> 0. In particular, and contrary to the commutative case, we give a simple example of a noncommutative noetherian Gorenstein (Frobenius) local algebra satisfying (uac) (uniform Auslander condition) but not satisfying (ee). (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2009_02_027.pdf | 245KB | download |