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In this paper, we will use techniques of noncommutative projective
geometry to construct examples of algebras R over a field k not
satisfying the following two types of symmetric behaviors of Ext-
groups: (EE) For any pair of finitely generated R-modules (M, N),
dimk Exti

R (M, N) < ∞ for all i ∈ N if and only if dimk Exti
R (N, M) <

∞ for all i ∈ N. (ee) For any pair of finitely generated R-modules
(M, N), Exti

R (M, N) = 0 for all i � 0 if and only if Exti
R (N, M) = 0

for all i � 0. In particular, and contrary to the commutative
case, we give a simple example of a noncommutative noetherian
Gorenstein (Frobenius) local algebra satisfying (uac) (uniform
Auslander condition) but not satisfying (ee).
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1. Introduction

1.1. Motivation

Throughout, we fix a base field k. Let R be an algebra over k. We denote by mod R the category
of finitely generated right R-modules. For M, N ∈ mod R , we defined in [16] the intersection multi-
plicity of M and N by M · N := (−1)GKdim R−GKdim Mξ(M, N) where GKdim M is the Gelfand–Kirillov
dimension of M and

ξ(M, N) :=
∑
i∈N

(−1)i dimk Exti
R(M, N)

is the Euler form of M and N . In order for this definition to yield a good intersection theory, we
must have the property M · N = N · M for reasonably nice R, M, N . Although, for each i, Exti

R(M, N)

and Exti
R(N, M) are very different in general (even if R is commutative), the property M · N = N · M
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holds in many situations. For example, over a commutative noetherian Gorenstein local algebra, this
property is equivalent to the Serre’s vanishing conjecture [11]. Moreover, for a noetherian connected
graded algebra R , and finitely generated graded right R-modules M and N , it is often the case that
M · N = N · M as long as both M · N and N · M are well defined [9]. So the natural question is to ask
whether M · N is well defined if and only if N · M is well defined (in the graded case). Since M · N is
well defined if and only if (i) dimk Exti

R(M, N) < ∞ for all i ∈ N, and (ii) Exti
R(M, N) = 0 for all i � 0,

we ask whether R satisfies the following two types of symmetric behaviors of Ext-groups:

• (EE): for all M, N ∈ mod R , dimk Exti
R(M, N) < ∞ for all i ∈ N if and only if dimk Exti

R(N, M) < ∞
for all i ∈ N.

• (ee): for all M, N ∈ mod R , Exti
R(M, N) = 0 for all i � 0 if and only if Exti

R(N, M) = 0 for all i � 0.

It is known that every commutative noetherian local algebra satisfies (EE) [11, Corollary 3.2]. On the
other hand, it is easy to see that if R is a local algebra satisfying (ee), then R must be Gorenstein,
so we focus on studying Gorenstein algebras in this paper. Presumably, Avramov and Buchweitz were
the first people who studied the condition (ee), and they proved that every commutative complete
intersection ring satisfies (ee) in [2]. The first example of a noetherian Gorenstein algebra not sat-
isfying (ee) was given by Jorgensen and Sega in [6], which is even a commutative Frobenius local
algebra. Later, a simpler but noncommutative (Frobenius) algebra not satisfying (ee) was given in [4].
(We thank Petter Andreas Bergh for pointing this out.) In this paper, we will use techniques of non-
commutative projective geometry to construct noncommutative algebras not satisfying (EE) and those
not satisfying (ee).

Related to the condition (ee), there is another condition (uac) (uniform Auslander condition) on a
ring R:

• (uac): there is an integer dR ∈ N such that, for all M, N ∈ mod R , if Exti
R(M, N) = 0 for all i � 0,

then Exti
R(M, N) = 0 for all i > dR .

It was shown [5, Theorem 4.1] that every commutative noetherian Gorenstein local ring satisfying
(uac) satisfies (ee). Contrary to the commutative case, we give a simple example of a noncommutative
noetherian Gorenstein (Frobenius) local algebra satisfying (uac) but not satisfying (ee). (In fact, we will
see that this happens quite frequently.)

Along the way toward the main results, we also prove that, for every FBN (fully bounded noethe-
rian) AS-Gorenstein Koszul algebra, there is a bijection between isomorphism classes of point modules
over A and those over Ao , extending [15, Theorem 6.3].

1.2. Noncommutative projective geometry

In this subsection, we review some of the language of noncommutative projective geometry which
will be needed in this paper. We refer to [1] for details. Let A be a graded algebra. We denote by
GrMod A the category of graded right A-modules, and by grmod A the full subcategory of finitely
generated graded right A-modules. Morphisms in GrMod A are A-module homomorphisms preserving
degrees. The category of (finitely generated) graded left A-modules can be identified with GrMod Ao

(grmod Ao) where Ao is the opposite graded algebra of A.
For a vector space V over k, we denote by V ∗ the dual vector space of V . For a graded vector

space V ∈ GrMod k, we define the graded vector space dual V ∗ ∈ GrMod k by (V ∗)i := (V−i)
∗ for

i ∈ Z. Moreover, for an integer n ∈ Z, we define the truncation V�n := ⊕
i�n V i ∈ GrMod k and the

shift V (n) ∈ GrModk by V (n)i := Vn+i for i ∈ Z. We say that V is right bounded if V�n = 0 for some
n ∈ Z. We say that V is locally finite if dimk V i < ∞ for all i ∈ Z. In this case, we define the Hilbert
series of V by

H V (t) :=
∑

(dimk V i)t
i ∈ Z

[[
t, t−1]].
i∈Z
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For M, N ∈ GrMod A, we denote by HomA(M, N) = HomGrMod A(M, N) the set of all A-module ho-
momorphisms f : M → N preserving degrees, and by Exti

A(M, N) = Exti
GrMod A(M, N) its right derived

functors. We further define the graded k-vector space

Exti
A(M, N) :=

⊕
n∈Z

Exti
A

(
M, N(n)

)
.

Note that if A is right noetherian and M ∈ grmod A, then it is easy to see that Exti
A(M, N) ∼=

Exti
Mod A(M, N) as vector spaces where we forget graded structures in the left-hand side.
We say that a module M ∈ GrMod A is torsion if it is a direct limit of right bounded modules.

We denote by Tors A the full subcategory of GrMod A consisting of torsion modules, and Tails A :=
GrMod A/Tors A the quotient category. The natural functor π : GrMod A → Tails A is exact and has a
right adjoint ω : Tails A → GrMod A. For M ∈ GrMod A, we often write M := π M ∈ Tails A. The set of
morphisms in Tails A is denoted by HomA(M, N ) = HomTails A(M, N ), and we define

Exti
A(M, N ) :=

⊕
n∈Z

Exti
A

(
M, N (n)

)

as before.
Let A be a connected graded algebra with the unique maximal homogeneous ideal m := A�1.

We will define two notions of Cohen–Macaulay. The local cohomology modules of M ∈ GrMod A are
defined by

Hi
m(M) := lim

n→∞ Exti
A(A/A�n, M) ∈ GrMod A.

For M ∈ GrMod A, we define the following numbers:

j(M) := inf
{

i
∣∣ Exti

A(M, A) �= 0
}
,

depth M := inf
{

i
∣∣ Hi

m(M) �= 0
}
,

ldim M := sup
{

i
∣∣ Hi

m(M) �= 0
}
.

We say that A satisfies Cohen–Macaulay property with respect to GK-dimension if

j(M) + GKdim M = GKdim A < ∞

for all M ∈ grmod A. We say that M is Cohen–Macaulay if depth M = ldim M < ∞. We say that A
satisfies the condition χ if Hi

m(M) are right bounded for all M ∈ grmod A and all i ∈ N.
The following classes of algebras are important in noncommutative projective geometry.

Definition 1.1. Let A be a noetherian connected graded algebra.

(1) We say that A is AS Cohen–Macaulay if
• A and Ao satisfy the condition χ , and
• A and Ao are Cohen–Macaulay as graded modules over themselves.

(2) We say that A is AS-Gorenstein if
• A is AS Cohen–Macaulay, and
• id A = id Ao < ∞.

(3) We say that A is a quantum polynomial algebra if
• A is AS-Gorenstein,
• gldim A = gldim Ao = d < ∞,
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• H A(t) = (1 − t)−d , and
• A satisfies Cohen–Macaulay property with respect to GK-dimension.

If A is a noetherian AS Cohen–Macaulay algebra of depth A = d, then the graded A-A bimodule
ωA := Hd

m(A)∗ is called the balanced dualizing module [10]. It is known that a noetherian AS Cohen–
Macaulay algebra is AS-Gorenstein if and only if there are a graded algebra automorphism ν ∈ Aut A
called the generalized Nakayama automorphism, and an integer � ∈ Z called the Gorenstein parameter,
such that ωA ∼= Aν(−�) as graded A-A bimodules. Note that every artinian connected graded algebra
is AS Cohen–Macaulay with the balanced dualizing module ωA = A∗ . It follows that every Frobenius
connected graded algebra is AS-Gorenstein and the generalized Nakayama automorphism is the usual
Nakayama automorphism in this case (see [15]).

A linear resolution of M ∈ grmod A is a free resolution of M of the form

· · · → A(−3)⊕r3 → A(−2)⊕r2 → A(−1)⊕r1 → A⊕r0 → M → 0

for some ri ∈ N. The full subcategory of grmod A consisting of modules having linear resolutions is
denoted by lin A. We say that A is Koszul if k := A/m ∈ lin A. It is known that A is Koszul if and only
if Ao is Koszul. Every Koszul algebra A is quadratic, that is, A = T (V )/(R) where R ⊂ V ⊗k V is a
subspace and (R) is the two-sided ideal of T (V ) generated by R . A useful fact about a Koszul algebra
A is that there is a duality E A : lin A ↔ lin A! : E A! where A! is the quadratic dual of A. It is known
that A! is also Koszul, called the Koszul dual of A. We refer to [18] for details on Koszul algebras.

For the rest of this paper, we only consider graded algebras finitely generated in degree 1 over a
base field k. Such an algebra can be written as A = T (V )/I where V is a finite dimensional vector
space over k, T (V ) is the tensor algebra of V over k, and I is a homogeneous ideal of T (V ). We often
fix this presentation of an algebra A.

2. The condition (EE) over AS-Gorenstein algebras

The purpose of this section is to produce a simple example of an algebra not satisfying (EE).

2.1. The condition (PC)

First, we will define the notion of complete point module and the condition (PC).

Definition 2.1. Let A = T (V )/I be a graded algebra finitely generated in degree 1. A point module
over A is a cyclic module M ∈ grmod A such that

HM(t) =
∞∑

i=0

ti = 1 + t + t2 + t3 + t4 + · · · .

The full subcategory of grmod A consisting of point modules over A is denoted by pmod A. The point
module sequence of a point module M ∈ pmod A is a sequence of points {p0, p1, p2, p3, . . .} where
pn := V ({ f ∈ V = A1 | Mn f = 0}) ⊂ P(V ∗).

A point module M ∈ pmod A is called complete if (ωπ M)�n(n) ∈ pmod A for all n ∈ Z. The
complete point module sequence of a complete point module M ∈ pmod A is a sequence of points
{. . . , p−2, p−1, p0, p1, p2, p3, . . .} where pn := V ({ f ∈ V = A1 | (ωπ M)n f = 0}) ⊂ P(V ∗). We say that
A satisfies (PC) if every point module is complete.

Every quantum polynomial algebra satisfies (PC) by [15, Proposition 6.6]. (Recall that if A is
a quantum polynomial algebra, then every point module over A has a linear resolution, that is,
pmod A = plin A := pmod A ∩ lin A [13, Corollary 5.7].) We will find below a larger class of algebras
satisfying (PC).
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Let A = T (V )/I be a graded algebra finitely generated in degree 1. Note that if M ∈ pmod A, then
M�n(n) ∈ pmod A for all n ∈ N. For a point p ∈ P(V ∗), we define a module M p := A/p⊥ A ∈ grmod A
where p⊥ = { f ∈ A1 = V | f (p) = 0}. By symmetry, we define p M := A/Ap⊥ ∈ grmod Ao . We say
that A is quasi-geometric if every point module over A is isomorphic to M p for some p ∈ P(V ∗).
In this case, we define the geometric pair P (A) = (E, σ ) where E = {p ∈ P(V ∗) | M p ∈ pmod A} and
σ : E → E is the map defined by (M p)�1(1) ∼= Mσ(p) (see [13]).

Lemma 2.2. Let A be a graded algebra, and M ∈ GrMod A. For f ∈ Ai , if M j−i f = 0, then f (M j)
∗ = 0.

Proof. Let φ ∈ (M j)
∗ so that φ : M j → k is a linear map. For f ∈ Ai and m ∈ M j−i , mf ∈ M j and

( f φ)(m) = φ(mf ). So if mf = 0 for all m ∈ M j−i , then f φ = 0 for all φ ∈ (M j)
∗ . �

Theorem 2.3. Let A be a noetherian AS Cohen–Macaulay algebra of depth A = d. If

Extd−1
A (−,ωA)(1) : pmod A ↔ pmod Ao : Extd−1

Ao (−,ωA)(1)

is a duality, then A and Ao satisfy (PC). In addition, if A and Ao are quasi-geometric, then P (A) = (E, σ )

and P (Ao) = (E, σ−1) for some bijection σ : E → E. Moreover, for a point p ∈ E, the complete point module
sequence of M p ∈ pmod A is {σ n(p)}n∈Z .

Proof. Since A is a noetherian AS Cohen–Macaulay algebra, for M ∈ GrMod A and i ∈ Z, we have
Hi

m(M)∗ ∼= Extd−i
A (M,ωA) in GrMod Ao by local duality [21, Theorem 5.1]. By assumption, if M ∈

pmod A, then Extd−1
A (M,ωA)(1) ∈ pmod Ao , so

HH1
m(M)(t) = HExtd−1

A (M,ωA )

(
t−1) = t−1 HExtd−1

A (M,ωA )(1)

(
t−1) = t−1 + t−2 + t−3 + · · · .

By [1, Proposition 7.2(2)], there is an exact sequence

0 → H0
m(M) ∼= 0 → M → ωπ M → H1

m(M) → 0,

so

(ωπ M)i ∼=
{

Mi ∼= k if i � 0,

H1
m(M)i ∼= k if i < 0.

By [1, Proposition 7.2(2)] again, there is an exact sequence

0 → H0
m(ωπ M) → ωπ M → ωπ(ωπ M) ∼= ωπ M → H1

m(ωπ M) → 0,

so H0
m(ωπ M) = 0, hence ωπ M is torsion-free. It follows that (ωπ M)�n is cyclic, so (ωπ M)�n(n) ∈

pmod A for all n ∈ Z, hence A satisfies (PC). By symmetry, Ao satisfies (PC).
If A is quasi-geometric with P (A) = (E, σ ), define a map τ : E → E by (ωπ M p)�−1(−1) = Mτ (p) ∈

pmod A. Since

Mστ(p)
∼= (Mτ (p))�1(1) = (

(ωπ M p)�−1(−1)
)
�1(1) ∼= (ωπ M p)�0 ∼= M p,

σ τ = idE . Since

Mτσ (p) = (ωπ Mσ (p))�−1(−1) ∼= (
ωπ

(
(Mp)�1(1)

))
�−1(−1)

∼= (ωπ Mp)(1)�−1(−1) ∼= (ωπ Mp)�0 ∼= Mp,
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τσ = idE , so σ : E → E is a bijection and τ = σ−1 : E → E . It follows that, for a point p ∈ E , the
complete point module sequence of M p ∈ pmod A is {σ n(p)}n∈Z .

By symmetry, if Ao is quasi-geometric with P (Ao) = (Eo, σ o), then σ o : Eo → Eo is a bijection.
Define a map φ : E → Eo by Extd−1

A (M p,ωA)(1) ∼= φ(p)M ∈ pmod Ao . For M = M p ∈ pmod A,

φ(p) = V
({

f ∈ V = A1
∣∣ f Extd−1

A (Mp,ωA)(1)0 = 0
})

= V
({

f ∈ V = A1
∣∣ f Extd−1

A (Mp,ωA)1 = 0
})

= V
({

f ∈ V = A1
∣∣ f

(
H1

m(M)−1
)∗ = 0

})
⊂ V

({
f ∈ V = A1

∣∣ H1
m(M)−2 f = 0

})
= V

({
f ∈ V = A1

∣∣ (ωπ M)−2 f = 0
})

= σ−2(p)

by Lemma 2.2, so E = Eo and φ = σ−2 : E → E . A short exact sequence

0 → M�1 → M → M/M�1 → 0

induces an exact sequence

H1
m(M�1) → H1

m(M) → H1
m(M/M�1) ∼= 0,

so there is an injection of shifted point modules

σ−2(p)M(−1) = φ(p)M(−1) = Extd−1
A (M,ωA) ∼= H1

m(M)∗

→ H1
m(M�1)

∗ ∼= Extd−1
A (M�1,ωA) ∼= Extd−1

A

(
M�1(1),ωA

)
(1)

∼= Extd−1
A (Mσ (p),ωA)(1) = φσ (p)M = σ−1(p)M.

It follows that

σ oσ−1(p)M = σ−1(p)M�1
(1) ∼= σ−2(p)M(−1)�1(1) ∼= σ−2(p)M

for all p ∈ E , so σ o = σ−1 : E → E . �
The following corollary extends [15, Theorem 6.3].

Corollary 2.4. If A is an AS Cohen–Macaulay Koszul algebra which is a graded quotient algebra of a quantum
polynomial algebra, or an FBN ( fully bounded noetherian) AS-Gorenstein Koszul algebra, then A and Ao sat-
isfy (PC), and P (A) = (E, σ ) and P (Ao) = (E, σ−1) for some bijection σ : E → E. In particular, there is a
bijection between isomorphism classes of point modules over A and those over Ao.

Proof. If A is an AS Cohen–Macaulay Koszul algebra which is a graded quotient algebra of a
quantum polynomial algebra, or an FBN AS-Gorenstein Koszul algebra, then A and Ao are quasi-
geometric by [13, Corollary 5.7, Theorems 5.8 and 3.8], and Extd−1

A (−,ωA)(1) : pmod A ↔ pmod Ao :
Extd−1

Ao (−,ωA)(1) is a duality by [15, Lemma 4.6], so the result follows from Theorem 2.3. �
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2.2. The condition (EE)

In this subsection, we will give a geometric way of constructing algebras not satisfying (EE). The
basic idea is to reduce the problem in the category GrMod A to that in the category Tails A. So we
first compare Ext-groups in GrMod A with those in Tails A.

Lemma 2.5. Let A be a right noetherian locally finite connected graded algebra satisfying χ , and M, N ∈
grmod A. Then, for each i ∈ N, dimk Exti

A(M, N) < ∞ if and only if Exti
A(M, N ) is right bounded.

Proof. For each i ∈ N,

(1) dimk Exti
A(M, N)n < ∞ for all n ∈ Z by [1, Proposition 3.1(3)],

(2) Exti
A(M, N)n = 0 for all n � 0 by [1, Proposition 3.1(1)(c)], and

(3) Exti
A(M, N)�n ∼= Exti

A(M, N )�n as graded vector spaces for all n � 0 by [1, Corollary 7.3(2)],

hence the result. �
We will see below that Ext-groups in Tails A are also controlled by geometry. For an abelian cat-

egory C , we denote by D(C) (Db(C)) the (bounded) derived category of C . For X ∈ D(C) and n ∈ Z,
X[n] ∈ D(C) is defined by (X[n])i := Xn+i for i ∈ Z. The following lemma is well known. We will
include the proof for the convenience of the reader.

Lemma 2.6. Let A be a right noetherian connected graded algebra. For K ∈ GrMod A, we have an isomorphism
of functors

RHomA
(

K,−) ∼= RHomA

(
K ,Rω(−)

) : Db(Tails A) → D(GrMod k).

Proof. Note that GrMod A,Tails A,GrModk are all abelian categories having enough injectives. Since
HomA(K ,−) : GrMod A → GrModk is a left exact functor, and ω : Tails A → GrMod A is a left exact
functor preserving injectives by [1, Proposition 7.1(1)],

RHomA(K,−) ∼= R
(
HomA

(
K ,ω(−)

)) = R
(
HomA(K ,−) ◦ ω(−)

)
∼= RHomA(K ,−) ◦ Rω(−) = RHomA

(
K ,Rω(−)

)
as functors Db(Tails A) → D(GrMod k) by [19, Corollary 10.8.3]. �
Definition 2.7. Let A = T (V )/I be a graded algebra finitely generated in degree 1. A cyclic graded
module of the form K = A/ f A ∈ grmod A where f ∈ A1 = V is a homogeneous regular element of
degree 1 is called a hyperplane module over A (associated to the hyperplane H = V ( f ) ⊂ P(V ∗)).

Proposition 2.8. Let A = T (V )/I be a noetherian AS-Gorenstein algebra satisfying Cohen–Macaulay property
with respect to GK-dimension. If M ∈ pmod A is a complete point module with the complete point module
sequence {pn}n∈Z , and K = A/ f A ∈ GrMod A is a hyperplane module where f ∈ A1 = V is a homogeneous
regular element of degree 1, then

dimk Exti
A(K, M)n =

{
k if i = 0,1 and pn ∈ V ( f ),
0 otherwise.

Proof. Since A is a noetherian AS-Gorenstein algebra satisfying Cohen–Macaulay property with re-
spect to GK-dimension, GKdim A = j(k) + GKdim k = depth A, so depth M � ldim M = GKdim M = 1
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by [12, Remark 2.4]. By [1, Proposition 7.2(2)], hi(RωM) ∼= Hi+1
m (M) = 0 for all i � 1, so RωM ∼=

h0(RωM) ∼= ωM in D(GrMod A). By Lemma 2.6, RHomA(K, M) ∼= RHomA(K ,RωM) ∼=
RHomA(K ,ωM). Consider the long exact sequence

· · · → Exti−1
A

(
K ,ωM/(ωM)�n

) → Exti
A

(
K , (ωM)�n

)
→ Exti

A(K ,ωM) → Exti
A

(
K ,ωM/(ωM)�n

) → ·· · .

Since Exti
A(K ,ωM/(ωM)�n)�n = 0 for all i ∈ N and all n ∈ Z by [1, Proposition 3.1(2)],

Exti
A(K , (ωM)�n)�n ∼= Exti

A(K ,ωM)�n , so

Exti
A(K, M)n ∼= Exti

A(K ,ωM)n ∼= Exti
A

(
K , (ωM)�n

)
n

∼= Exti
A

(
K , (ωM)�n(n)

)
0

for all i ∈ N and all n ∈ Z. Since (ωM)�n(n) is a point module with the point module sequence
{pn, pn+1, pn+2, pn+3, . . .}, the result follows from the proof of [13, Theorem 6.1]. �

Next, we will see below that an asymmetric behavior of Ext in the category Tails A is controlled
by the generalized Nakayama automorphism.

Definition 2.9. We say that an abelian category C has finite global dimension if there is an integer
n ∈ N such that Exti

C (M, N ) = 0 for all M, N ∈ C and all i > n.

Example 2.10. The following are examples of graded algebras A such that Tails A has finite global
dimension.

(1) If A is a commutative graded algebra finitely generated in degree 1 and X = Proj A is the asso-
ciated projective scheme, then Tails A ∼= Mod X where Mod X is the category of quasi-coherent
sheaves on X , so Tails A has finite global dimension if and only if Proj A is smooth. So we may
think of the condition “Tails A has finite global dimension” as the condition “Proj A is smooth”
even if A is not commutative.

(2) If A has finite global dimension, then Tails A has finite global dimension.
(3) If A is a right noetherian graded algebra generated in degree 1, then Tails A(r) ∼= Tails A for any

r ∈ N
+ by [1, Proposition 5.10(3)] where A(r) is the rth Veronese subalgebra of A, so if A has

finite global dimension, then Tails A(r) has finite global dimension.
(4) If A is an FBN AS Cohen–Macaulay algebra of finite CM-representation type, then, for any M, N ∈

grmod A, Exti
A(M, N ) = 0 for all i � depth A by [7, Theorem 2.5], so tails A has finite global

dimension.

Let A be a graded algebra and τ ∈ Aut A a graded algebra automorphism. For a graded module
M ∈ GrMod A, we define a new graded module Mτ ∈ GrMod A by Mτ = M as a graded vector space
with the new right action m ∗ a := mτ (a) for m ∈ M,a ∈ A.

Lemma 2.11. Let A be a noetherian AS-Gorenstein algebra of injective dimension d and Gorenstein parame-
ter �, and let ν ∈ Aut A be the generalized Nakayama automorphism of A. If Tails A has finite global dimension,
then, for M, N ∈ grmod A and all i ∈ Z,

Exti
A(M, N ) ∼= Extd−1−i

A (N , Mν)∗(�)

as graded vector spaces. In particular, for all n ∈ Z,

Exti
A(M, N )n ∼= Extd−1−i

A (N , Mν)−n−�

as vector spaces.
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Proof. Since A is a noetherian AS-Gorenstein algebra, Aν(−�)[d] is the balanced dualizing complex
for A in the sense of [20]. Since Tails A has finite global dimension,

− ⊗L
A Aν(−�)[d − 1] : Db(tails A) → Db(tails A)

is the Serre functor by [17, Theorem A.4], so, for M, N ∈ grmod A,

Exti
A(M, N ) ∼= Ext−i

A
(

N , M ⊗L
A Aν(−�)[d − 1])∗ ∼= Extd−1−i

A (N , Mν)∗(�)

as graded vector spaces. �
Let A = T (V )/I be a graded algebra. If τ ∈ Aut A is a graded algebra automorphism, then it restricts

to an automorphism τ : V → V , so its dual induces an automorphism τ ∗ : P(V ∗) → P(V ∗). If A is
quasi-geometric with P (A) = (E, σ ), then it is easy to see that τ ∗ restricts to a bijection τ ∗ : E → E
(see [15]).

Theorem 2.12. Let A = T (V )/I be a quasi-geometric FBN AS-Gorenstein algebra satisfying (PC) with P (A) =
(E, σ ) such that Tails A has finite global dimension, and let ν ∈ Aut A be the generalized Nakayama automor-
phism of A. If there are a point p ∈ E and a hyperplane V ( f ) ⊂ P(V ∗) where f ∈ A1 = V is a homogeneous
regular element of degree 1 such that #{n ∈ N | σ n(p) ∈ V ( f )} = ∞ but #{n ∈ N | σ−nν∗(p) ∈ V ( f )} < ∞,
then A does not satisfy (EE).

Proof. By [22, Theorem 3.1(1)], A satisfies Cohen–Macaulay property with respect to GK-dimension.
Let M = M p be a point module and K = A/ f A a hyperplane module. Since {σ n(p)}n∈Z is a com-
plete point module sequence of M by Theorem 2.3, if #{n ∈ N | σ n(p) ∈ V ( f )} = ∞, then, for
i = 0,1, Exti

A(K, M)n �= 0 for infinitely many n ∈ N by Proposition 2.8, so dimk Exti
A(K , M) = ∞ by

Lemma 2.5. On the other hand, since {σ nν∗(p)}n∈Z is a complete point module sequence of Mν by
[15, Lemma 3.2(1)] and Theorem 2.3, if #{n ∈ N | σ−nν∗(p) ∈ V ( f )} < ∞, then Exti

A(K, Mν)−n = 0
for all i ∈ N and all n � 0 by Proposition 2.8. It follows that Exti

A(M, K) are right bounded for all
i ∈ N by Lemma 2.11, hence dimk Exti

A(M, K ) < ∞ for all i ∈ N by Lemma 2.5. �
Remark 2.13. In the above arguments, techniques of noncommutative projective geometry play an
essential role in the following sense: since Db(grmod A) almost never has Serre functor, an asym-
metric behavior of Ext in the category GrMod A is not controlled by the generalized Nakayama
automorphism. In fact, although we know that Exti

A(M, N)�n ∼= Exti
A(M, N )�n and Exti

A(N, Mν)�n ∼=
Exti

A(N , Mν)�n for all n � 0 by [1, Corollary 7.3(2)], Ext•A(M, N )�0 and Ext•A(N , Mν)�0 are not
related in general, so Ext•A(M, N)�0 and Ext•A(N, Mν)�0 are not related at all. What we know is that
Ext•A(M, N )�0 and Ext•A(N , Mν)�0 are related by Lemma 2.11. (We would like to emphasize this
point, because some of the readers might think that the above result is trivial by a simple application
of the Serre functor.) That is why we must pass through the category Tails A and use rather special
modules, namely, complete point modules in the above arguments.

Corollary 2.14. Let A = T (V )/I be a quasi-geometric FBN AS-Gorenstein domain satisfying (PC) with P (A) =
(E, σ ) such that Tails A has finite global dimension, and let ν ∈ Aut A be the generalized Nakayama automor-
phism of A. If

• k is an infinite field,
• dimk V � 3,
• |σ | < ∞, and
• there is a point p ∈ E such that σ i(p) �= ν∗(p) for any i ∈ Z,

then A does not satisfy (EE).
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Proof. Since A is a domain, any homogeneous element f ∈ A1 of degree 1 is regular. Since k is
infinite, dimk V � 3, and the orbit S of ν∗(p) under σ is a finite set not containing p, there is a hyper-
plane V ( f ) ⊂ P(V ∗) such that p ∈ V ( f ) but V ( f ) ∩ S = ∅. Since |σ | < ∞, σ n(p) ∈ V ( f ) for infinitely
many n ∈ N but σ−nν∗(p) /∈ V ( f ) for any n ∈ N, hence the result follows from Theorem 2.12. �
Example 2.15. Let A = k〈x, y, z〉/(zy − αyz, xz − βzx, yx − γ xy) where α,β,γ ∈ k such that αβγ �=
0,1. It is well known that P (A) = (E, σ ) where E = V (xyz) ⊂ P(V ∗) and

σ(0,b, c) = (0,αb, c),

σ (a,0, c) = (a,0, βc),

σ (a,b,0) = (γ a,b,0).

Since

(xyz)x = (γ /β)x(xyz),

(xyz)y = (α/γ )y(xyz),

(xyz)z = (β/α)x(xyz)

in A, the bijection ν∗ : E → E induced by the generalized Nakayama automorphism ν ∈ Aut A of A is
given by

ν∗(a,b, c) = (
(γ /β)a, (α/γ )b, (β/α)c

)
by [20, Theorem 7.18]. Suppose that k is an infinite field, and α,β,γ are roots of unity so that
|σ | < ∞. If αi �= βγ for any i ∈ Z, then σ i(0,1,1) = (0,αi,1) �= (0,α/γ ,β/α) = ν∗(0,1,1) for any
i ∈ Z, so A does not satisfy (EE) by Corollary 2.14. By symmetry, if β i �= γα for any i ∈ Z, or γ i �= αβ

for any i ∈ Z, then A does not satisfy (EE).

3. The condition (ee) over Frobenius Koszul algebras

The purpose of this section is to produce a simple example of an algebra not satisfying (ee). We
will see that there are many analogies between the arguments in this section and the previous one.

3.1. The condition (pc)

First, we will define the notion of complete co-point module and the condition (pc).

Definition 3.1. Let A be a noetherian graded algebra. A graded module N ∈ grmod A is called totally
reflexive if Exti

A(N, A) = 0 = Exti
Ao (HomA(N, A), A) for all i � 1, and there is a canonical isomorphism

N ∼= HomAo (HomA(N, A), A) in grmod A.

In other words, N ∈ grmod A is totally reflexive if and only if RHomA(N, A) ∼= HomA(N, A) in
Db(grmod Ao) and RHomAo (RHomA(N, A), A) ∼= N in Db(grmod A). Note that if A is Frobenius, then
every finitely generated graded module is totally reflexive.

Definition 3.2. Let A be a noetherian graded algebra. An acyclic complex of finitely generated free
modules T is called totally acyclic if HomA(T , A) is also acyclic.

For a complex of free modules

T : · · · ∂n−2−−−→ T n−1 ∂n−1−−−→ T n ∂n−−→ T n+1 ∂n+1−−−→ · · · ,
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we define Ωn T := Coker ∂n−1. For N ∈ GrMod A, we define Ωn N := Ωn F where F is the minimal free
resolution of N .

Lemma 3.3. (See [3, Theorem 3.1].) Let A be a noetherian graded algebra. A graded module N ∈ grmod A is
totally reflexive if and only if there is a totally acyclic complex T such that Ω0T ∼= N.

We call T in the above lemma a complete resolution of N . A complete resolution can be defined
for more general modules (see [3]).

Definition 3.4. Let A = T (V )/I be a graded algebra finitely generated in degree 1. A co-point module
over A having a linear resolution is a module N ∈ grmod A having a linear resolution of the form

· · · v3·−−→ A(−3)
v2·−−→ A(−2)

v1·−−→ A(−1)
v0·−−→ A → N → 0

where vi ∈ A1 = V . The full subcategory of grmod A consisting of co-point modules over A having
linear resolutions is denoted by clin A.

A co-point module N ∈ clin A having a linear resolution is called complete if N has a complete
resolution of the form

T : · · · v2·−−→ A(−2)
v1·−−→ A(−1)

v0−−→ A
v−1·−−−→ A(1)

v−2·−−−→ A(2)
v−3·−−−→ · · ·

where vi ∈ A1 = V . The complete co-point module sequence of a complete co-point module N is a
sequence of points {. . . , p−2, p−1, p0, p1, p2, . . .} where pi = [vi] ∈ P(V ) are the images of vi ∈ V . We
say that A satisfies (pc) if every co-point module having a linear resolution is complete.

If A is a Frobenius Koszul algebra such that A! is a quantum polynomial algebra, then A satisfies
(pc) by the proof of [15, Theorem 6.1(1)]. We will find below a larger class of algebras satisfying (pc).

Let A = T (V )/I be a graded algebra finitely generated in degree 1. Note that if N ∈ clin A, then
Ωn N(n) ∈ clin A for all n ∈ N. For a point p ∈ P(V ), we define a module N p := A/v A ∈ grmod A where
v ∈ A1 = V such that p = [v] ∈ P(V ). By definition, every co-point module over A having a linear
resolution is isomorphic to N p for some p ∈ P(V ). We define the co-geometric pair P !(A) = (E, σ )

where E = {p ∈ P(V ) | N p ∈ clin A} and σ : E → E is the map defined by ΩN p(1) ∼= Nσ(p) (see [13]).
We now prepare two easy lemmas.

Lemma 3.5. Let A = T (V )/I be a graded algebra finitely generated in degree 1, and τ ∈ Aut A a graded alge-
bra automorphism. If N ∈ clin A is a complete co-point module with the complete co-point module sequence
{. . . , p−2, p−1, p0, p1, p2, . . .}, then Nτ ∈ clin A is also a complete co-point module with the complete co-
point module sequence {. . . , τ−1(p−2), τ

−1(p−1), τ
−1(p0), τ

−1(p1), τ
−1(p2), . . .}.

Proof. If

· · · v2·−−→ A(−2)
v1·−−→ A(−1)

v0·−−→ A
v−1·−−−→ A(1)

v−2·−−−→ · · ·

is a complete resolution of N where pi = [vi] ∈ P(V ), then

· · · τ−1(v2)·−−−−−−→ A(−2)
τ−1(v1)·−−−−−−→ A(−1)

τ−1(v0)·−−−−−−→ A
τ−1(v−1)·−−−−−−→ A(1)

τ−1(v−2)·−−−−−−→ · · ·

is a complete resolution of Nτ where τ−1(pi) = [τ−1(vi)] ∈ P(V ). �
Lemma 3.6. Let A be a graded algebra. If id A < ∞, then every acyclic complex of finitely generated free
modules is totally acyclic.
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Proof. Let d = id A < ∞ and T an acyclic complex of finitely generated free modules. Since
T �d+1−n[d + 1 − 1] is a free resolution of Ωd+1−n T ,

Extn
A(T , A) ∼= Extn

A

(
T �d+1−n, A

) ∼= Extd+1
A

(
T �d+1−n[d + 1 − n], A

)
∼= Extd+1

A

(
Ωd+1−nT , A

) = 0

for all n ∈ Z, hence the result. �
Theorem 3.7. Let A be a noetherian AS-Gorenstein algebra. If P !(A) = (E, σ ) for some bijection σ : E → E,
then, for each p ∈ E, N p ∈ clin A is a complete co-point module with the complete co-point module sequence
{σ n(p)}n∈Z . In particular, A satisfies (pc).

Proof. Since σ : E → E is a bijection, for every point p ∈ E , σ n(p) ∈ E for all n ∈ Z, so

T : · · · σ 2(p)·−−−−→ A(−2)
σ (p)·−−−−→ A(−1)

p·−−→ A
σ−1(p)·−−−−−→ A(1)

σ−2(p)·−−−−−→ A(2)
σ−3(p)·−−−−−→ · · ·

is an acyclic complex of finitely generated free modules such that Ω0T ∼= N p . Since T is totally acyclic
by Lemma 3.6, it is a complete resolution of N p ∈ clin A. �

We know so far no example of an algebra such that σ : E → E is not a bijection, so we hope that
a large class of noetherian AS-Gorenstein algebras satisfy (pc). For example, the following corollary
provides a class of algebras satisfying (pc).

Corollary 3.8. Let A be a noetherian AS-Gorenstein Koszul algebra. If its Koszul dual A! is a graded quotient
algebra of a quantum polynomial algebra, or an FBN AS-Gorenstein Koszul algebra, then A and Ao satisfy (pc).

Proof. By [13, Corollary 5.7, Theorems 5.8 and 3.8] and Corollary 2.4, P !(A) = P (A!) = (E, σ ) for
some bijection σ : E → E , so A satisfies (pc) by Theorem 3.7. By symmetry, Ao satisfies (pc). �

The following are characterizations of algebras satisfying (pc).

Theorem 3.9. Let A be a noetherian AS-Gorenstein algebra. Then the following are equivalent:

(1) Every co-point module over A and Ao having linear resolution is totally reflexive and

HomA(−, A)(1) : clin A ↔ clin Ao : HomAo (−, A)(1)

is a duality.
(2) P !(A) = (E, σ ) and P !(Ao) = (E, σ−1) for some bijection σ : E → E.
(3) A and Ao satisfy (pc).

Proof. (1) ⇒ (2): This follows from the proof of [15, Theorem 6.1(1)].
(2) ⇒ (3): This follows from Theorem 3.7.
(3) ⇒ (1): Suppose that every co-point module N p0 ∈ clin A has a complete resolution of the form

· · · v2·−−→ A(−2)
v1·−−→ A(−1)

v0·−−→ A
v−1·−−−→ A(1)

v−2·−−−→ A(2)
v−3·−−−→ · · · .

Applying the functor HomA(−, A), we have an acyclic complex

· · · ·v2←−− A(2)
·v1←−− A(1)

·v0←−− A
·v−1←−−− A(−1)

·v−2←−−− A(−2)
·v−3←−−− · · · ,
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so it is a complete resolution of HomA(N p0 , A). It follows that HomA(N p0 , A)(1) ∼= p−2 N ∈ clin Ao , so
there is a functor HomA(−, A)(1) : clin A → clin Ao . Since N p0 is totally reflexive by Lemma 3.3,

HomAo

(
HomA(N p0 , A)(1), A

)
(1) ∼= HomAo

(
HomA(N p0 , A), A

) ∼= N p0 .

By symmetry, every co-point module over Ao having a linear resolution is totally reflexive, and there
is a functor HomAo (−, A)(1) : clin Ao → clin A such that HomA(HomAo (N, A)(1), A)(1) ∼= N for all
N ∈ clin Ao . It follows that HomA(−, A)(1) : clin A ↔ clin Ao : HomAo (−, A)(1) is a duality. �
3.2. The condition (ee)

We will use a co-hyperplane module defined below to find algebras not satisfying (ee).

Definition 3.10. Let A = T (V )/I be a graded algebra finitely generated in degree 1, and H = P(W ) ⊂
P(V ) a hyperplane where W ⊂ V is a co-dimension 1 subspace. A co-hyperplane module over A
associated to H is a cyclic graded right A-module defined by LH := A/(W A + A�2) ∈ grmod A.

There is a correspondence between hyperplane modules and co-hyperplane modules via Koszul
duality.

Lemma 3.11. Let A = T (V )/(R) be a Koszul algebra where R ⊂ V ⊗k V is a subspace, and H = V ( f ) ⊂ P(V ∗)
a hyperplane where f ∈ A1 = V is a homogeneous regular element of degree 1. If K = A/ f A ∈ lin A is a
hyperplane module over A, then E A(K ) = LH ∈ lin A! is a co-hyperplane module over A! associated to the
hyperplane H.

Proof. If kf ⊂ V is a 1-dimensional subspace generated by f ∈ A1 = V , then (kf )⊥ := {λ ∈ V ∗ |
λ( f ) = 0} ⊂ V ∗ is a co-dimension 1 subspace, and

V( f ) = {
p ∈ P(V ∗)

∣∣ f (p) = 0
}

= {[λ] ∈ P(V ∗)
∣∣ λ( f ) = 0

}
= {[λ] ∈ P(V ∗)

∣∣ λ ∈ (kf )⊥
}

= P
(
(kf )⊥

)
.

Since f ∈ A1 = V is a homogeneous regular element of degree 1,

0 → A(−1)
f ·−−→ A → K → 0

is a linear free resolution of K , so H K (t) = H A(t) − t H A(t) = (1 − t)H A(t). Since

0 → kf ⊗k A → k ⊗k A → K → 0

is the minimal free resolution of K ∈ lin A, the minimal free resolution of E A(K ) ∈ lin A! begins

(kf )⊥ ⊗k A! → k∗ ⊗k A! → E A(K ) → 0

by [18, Theorem 6.3(3)], so E A(K ) = A!/(kf )⊥ A! ∈ lin A! . By [18, Theorem 6.3(2)], H E A(K )(t) =
H K (−t)/H A(−t) = 1 + t , so E A(K ) = A!/(kf )⊥ A! = A!/((kf )⊥ A! + A!

�2) ∈ lin A! is a co-hyperplane
module associated to H = V ( f ). �



2248 I. Mori / Journal of Algebra 322 (2009) 2235–2250
Let A be a noetherian graded algebra and M, N ∈ grmod A. Recall that if N has a complete

resolution T , then we define the Tate cohomologies by Êxt
i
A(N, M) := hi(HomA(T , M)). The Tate co-

homologies can be defined for more general modules (see [3,8]).

Lemma 3.12. Let A = T (V )/I be a graded algebra finitely generated in degree 1. If N ∈ clin A is a complete co-
point module with the complete co-point module sequence {pn}n∈Z , and L = LH ∈ grmod A is a co-hyperplane

module associated to a hyperplane H ⊂ P(V ), then Êxt
i
A(N, L) �= 0 if and only if pi ∈ H or pi−1 ∈ H.

Proof. Since the complete resolution of N ∈ clin A is

· · · v2·−−→ A(−2)
v1·−−→ A(−1)

v0·−−→ A
v−1·−−−→ A(1)

v−2·−−−→ A(2)
v−3·−−−→ · · ·

where pi = [vi] ∈ P(V ), Êxt
i
A(N, L) are the homologies of the complex

· · · ·v−3−−−→ L(−2)
·v−2−−−→ L(−1)

·v−1−−−→ L
·v0−−→ L(1)

·v1−−→ L(2)
·v2−−→ · · · .

Since L = A/(W A + A�2) = k ⊕ (V /W ) where W ⊂ V is a codimension 1 subspace such that
H = P(W ),

Ker
{

L(i)
·vi−−→ L(i + 1)

} =
{

L(i) if vi ∈ W ,

L(i)−i+1 if vi /∈ W ,

and

Im
{

L(i − 1)
·vi−1−−−→ L(i)

} =
{

0 if vi−1 ∈ W ,

L(i)−i+1 if vi−1 /∈ W ,

hence the result. �
Proposition 3.13. Let A = T (V )/I be a noetherian AS-Gorenstein algebra with P !(A) = (E, σ ) such that
σ : E → E is a bijection. If N = N p ∈ clin A is a co-point module over A having a linear resolution associated
to a point p ∈ E, and L = LH ∈ grmod A is a co-hyperplane module associated to a hyperplane H ⊂ P(V ),

then Êxt
i
A(N, L) �= 0 if and only if σ i(p) ∈ H or σ i−1(p) ∈ H.

Proof. By Theorem 3.7, for every p ∈ E , N p ∈ clin A is a complete co-point module with the complete
co-point module sequence {σ n(p)}n∈Z , so the result follows from Lemma 3.12. �

The following theorem provides more examples of algebras not satisfying (uac), extending [13,
Corollary 6.2].

Theorem 3.14. Let A = T (V )/I be a noetherian AS-Gorenstein algebra with P !(A) = (E, σ ) such that
σ : E → E is a bijection. If there are a point p ∈ P(V ) and a hyperplane H ⊂ P(V ) such that 0 < #{i ∈ Z |
σ i(p) ∈ H} < ∞, then A does not satisfy (uac).

Proof. Let d = id A < ∞. We fix n ∈ Z such that σ n(p) ∈ H . By [14, Lemma 3.1], Exti
A(Nσn−d−1(p), LH ) ∼=

Êxt
i
A(Nσn−d−1(p), LH ) for i > d. Since σ i(σ n−d−1(p)) = σ i+n−d−1(p) /∈ H for any i � 0 by the assump-

tion, Exti
A(Nσn−d−1(p), LH ) = 0 for all i � 0 by Proposition 3.13. However, since σ d+1(σ n−d−1(p)) =

σ n(p) ∈ H ,

Extd+1
A (Nσn−d−1(p), LH ) ∼= Êxt

d+1
A (Nσn−d−1(p), LH ) �= 0

by Proposition 3.13 again, so A does not satisfy (uac) by [14, Corollary 3.3]. �
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Note that in order for the geometric condition in the above theorem to be satisfied, we must have
|σ | = ∞.

The following is the main theorem of this section.

Theorem 3.15. Let A = T (V )/(R) be a Frobenius Koszul algebra with P !(A) = (E, σ ) such that A! is a quan-
tum polynomial algebra, and let ν ∈ Aut A be the Nakayama automorphism of A. If there are a point p ∈ E
and a hyperplane H ⊂ P(V ) such that #{i ∈ N | σ i(p) ∈ H} = ∞ but #{i ∈ N | σ−iν(p) ∈ H} < ∞, then A
does not satisfy (ee).

Proof. If #{i ∈ N | σ i(p) ∈ H} = ∞, then Êxt
i
A(N, L) �= 0 for infinitely many i ∈ N by Proposition 3.13,

so Exti
A(N, L) �= 0 for infinitely many i ∈ N by [14, Lemma 3.1]. On the other hand, suppose that

#{i ∈ N | σ−iν(p) ∈ H} < ∞. Since

Êxt
i
A(L, N) ∼= Êxt

−1−i
A

(
(N p)ν−1 (−d), L

)∗ ∼= Êxt
−1−i
A (Nν(p), L)∗(−d)

as graded vector spaces where d = gldim A! by [8, Proposition 8] and [15, Lemma 3.2(2)], Êxt
i
A(L, N) �=

0 for finitely many i ∈ N by Proposition 3.13 again, hence Exti
A(L, N) �= 0 for finitely many i ∈ N by

[14, Lemma 3.1] again. �
Corollary 3.16. Let A = T (V )/(R) be a Frobenius Koszul algebra with P !(A) = (E, σ ) such that A! is a quan-
tum polynomial algebra, and let ν ∈ Aut A be the Nakayama automorphism of A. If

• k is an infinite field,
• dimk V � 3,
• |σ | < ∞, and
• there is a point p ∈ E such that σ i(p) �= ν(p) for any i ∈ Z,

then A does not satisfy (ee).

Proof. The proof is similar to that of Corollary 2.14. �
Remark 3.17. Recall that the map σ : E → E corresponds to the syzygy functor Ω : grmod A →
grmod A, and the map ν : E → E corresponds to the Nakayama functor −⊗A A∗ : grmod A → grmod A,

so the condition σ i(p) �= ν(p) for any i ∈ Z in the above corollary implies that grmod A is not Calabi–
Yau (up to degree shifts) or A is not stably symmetric in the sense of [14].

Example 3.18. Let A = k〈x, y, z〉/(αzy + yz, βxz + zx, γ yx + xy, x2, y2, z2) where α,β,γ ∈ k such that
αβγ �= 0,1. Since A! ∼= k〈x, y, z〉/(zy − αyz, xz − βzx, yx − γ xy), P !(A) = P (A!) = (E, σ ) where E =
V (xyz) ⊂ P(V ) and

σ(0,b, c) = (0,αb, c),

σ (a,0, c) = (a,0, βc),

σ (a,b,0) = (γ a,b,0)

by [13, Theorem 3.8], and the map ν : E → E induced by the Nakayama automorphism ν ∈ Aut A of
A is given by

ν(a,b, c) = (
(γ /β)a, (α/γ )b, (β/α)c

)
by [21, Theorem 9.2]. Suppose that k is an infinite field, and α,β,γ are roots of unity so that |σ | < ∞.
If αi �= βγ for any i ∈ Z, β i �= γα for any i ∈ Z, or γ i �= αβ for any i ∈ Z, then A does not satisfy (ee)
by the same argument as in Example 2.15.
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Remark 3.19. In the commutative case, the condition (uac) implies the condition (ee) over noetherian
commutative Gorenstein local rings [5, Theorem 4.1]. However, in the above example, if α,β,γ are
roots of unity, then A satisfies (uac) by [13, Theorem 6.5]. So, for example, if α = 1 and β = γ is the
primitive nth root of unity for n � 3, then A is a noetherian AS-Gorenstein (Frobenius) algebra sat-
isfying (uac) but not satisfying (ee). It follows that the condition (uac) does not imply the condition
(ee) over noncommutative Gorenstein rings. In [4], there is given a simple example of a noncommu-
tative (Frobenius) algebra not satisfying (ee), however, that example does not satisfy (uac) either by
[13, Theorem 6.5], so Example 3.18 may provide the first example of an algebra satisfying (uac) but
not satisfying (ee). However, Example 3.18 also suggests that, for a Frobenius, non-stably symmetric
Koszul algebra A with P !(A) = (E, σ ), if |σ | < ∞, then A tends to satisfy (uac) but A tends not to
satisfy (ee), so, contrary to the commutative situation, (uac) and (ee) are rather exclusive conditions.
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