JOURNAL OF ALGEBRA | 卷:518 |
Varieties with at most cubic growth | |
Article | |
Mishchenko, S.1  Valenti, A.2  | |
[1] Ulyanovsk State Univ, Dept Appl Math, Ulyanovsk 432970, Russia | |
[2] Univ Palermo, Dipartirnento Energia Ingn Informaz & Modelli Mat, I-90128 Palermo, Italy | |
关键词: Varieties; Codimension growth; | |
DOI : 10.1016/j.jalgebra.2018.09.040 | |
来源: Elsevier | |
【 摘 要 】
Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions c(n) (V),n = 1,2,..., and here we study varieties of polynomial growth. We classify all possible growth of varieties V of algebras satisfying the identity x(yz) equivalent to 0 such that c(n) (V) < C-n(alpha) with 1 <= alpha < 3, for some constant C. We prove that if 1 <= alpha < 2 then c(n) (V) <= C-1n, and if 2 <= alpha < 3, then c(n)(V) <= C(2)n(2), for some constants C-1, C-2. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2018_09_040.pdf | 398KB | download |