期刊论文详细信息
JOURNAL OF ALGEBRA 卷:445
Presentation of hyperbolic Kac-Moody groups over rings
Article
Allcock, Daniel1  Carbone, Lisa2 
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
关键词: Finite presentation;    Hyperbolic Kac-Moody group;   
DOI  :  10.1016/j.jalgebra.2015.08.012
来源: Elsevier
PDF
【 摘 要 】

Tits has defined Kac-Moody and Steinberg groups over commutative rings, providing infinite dimensional analogues of the Chevalley-Demazure group schemes. Here we establish simple explicit presentations for all Steinberg and Kac-Moody groups whose Dynkin diagrams are hyperbolic and simply laced. Our presentations are analogues of the Curtis-Tits presentation of the finite groups of Lie type. When the ground ring is finitely generated, we derive the finite presentability of the Steinberg group, and similarly for the Kac-Moody group when the ground ring is a Dedekind domain of arithmetic type. These finite-presentation results need slightly stronger hypotheses when the rank is smallest possible, namely 4. The presentations simplify considerably when the ground ring is Z, a case of special interest because of the conjectured role of the Kac-Moody group E-10 (Z) in superstring theory. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2015_08_012.pdf 361KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次