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Table 1
The simply-laced hyperbolic Dynkin diagrams. The rank
means the number of nodes.

rank 4 A Z -—4
rank 5 Z ——<>

rank s | .| [ '_Q
ko |1 1 _G

rank 10 I [ I

1. Introduction

Kac—Moody groups are infinite-dimensional generalizations of reductive Lie groups
and algebraic groups. Over general rings, their final definition has not yet been found—it
should be some sort of generalization of the Chevalley—Demazure group schemes. Given
any root system, Tits defined a functor from commutative rings to groups and proved
that it approximates any acceptable definition, and gives the unique best definition
when the coefficient ring is a field [21]. His definition, by generators and relations, is
very complicated. Even enumerating his relations in non-affine examples is difficult and
in some cases impracticable [10,4].

In this paper we study the question of improving this in the case of the simplest
non-affine Dynkin diagrams: the simply laced hyperbolic ones. The main result is that
these, and related groups, have quite simple presentations, often finite. Our results are
parallel those established for the affine case in [3]. Near the end of the Introduction we
will remark on the situation beyond the affine and simply-laced hyperbolic cases.

An irreducible Dynkin diagram is called hyperbolic if it is not of affine or finite dimen-
sional type, but its proper irreducible subdiagrams are. It is called simply laced if each
pair of nodes is either unjoined, or joined by a single bond. One can classify the simply
laced hyperbolic diagrams [16, §6.9], namely those in Table 1. The most important one is
the last, known as Ejg, because of its conjectural role in superstring theory (see below).
We will pass between Dynkin diagrams and their generalized Cartan matrices whenever
convenient.

For each generalized Cartan matrix A, Tits [21] defined the Steinberg group, a func-
tor Gt from commutative rings to groups that generalizes Steinberg’s definition from
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the classical finite dimensional case (the group G’ on p. 78 of [20]). Morita and Rehmann
[17] give another definition, but it agrees with Tits’ for the diagrams in Table 1 because
these are 2-spherical without isolated nodes [21, Remark a4, p. 550]. By taking a quotient
of Gty, Tits defined another functor &4 from commutative rings to groups, which we
call the Kac—Moody group. We call Gty and &4 hyperbolic if A is hyperbolic. (Note: Tits
actually defined a group functor & for each root datum D. By 64 we mean ®p where
D is the root datum which has generalized Cartan matrix A and is “simply connected
in the strong sense” [21, p. 551].)

Tits showed that his model of a Kac—-Moody group is the natural one, at least for fields.
Namely: any group functor with some obviously desirable properties admits a functorial
homomorphism from &,4, which at every field is an isomorphism [21, Thm. 1/, p. 553].
Tits does not call 84 a Kac-Moody group. We call it this just to have a name for the
closest known approximation to whatever the ultimate definition of “the” Kac-Moody
functors will be.

Let R be a commutative ring. Tits’ definition of Gt4(R) is by a presentation with
a generator X, (t) for each real root « of the Kac-Moody algebra g4 and each ¢t € R.
Whenever two real roots «, § form a prenilpotent pair (defined in Section 2), Tits imposes
a relation [X,(t), Xg(u)] = - - for each pair ¢,u € R. The right side is a product of other
generators X, (v), generalizing the classical Chevalley relations; see Section 2 for the
details in the cases we need. Unless A has finite-dimensional type, there are infinitely
many Weyl-group orbits of prenilpotent pairs, yielding infinitely many distinct kinds of
relations. Our main result is a new, much simpler, presentation, given entirely in terms
of the Dynkin diagram:

Theorem 1 (Presentation of Steinberg and Kac—Moody groups). Suppose R is a com-
mutative Ting and A is a simply laced hyperbolic Dynkin diagram, with I being its set
of nodes. Then the Steinberg group Sta(R) has a presentation with generators S; and
Xi(t), with i varying over I and t over R, and relations listed in Table 2.

The Kac-Moody group ®4(R) is the quotient of Sta(R) by the extra relations
hi(a)hi(b) = hi(ab), for any single i € I and all units a,b of R, where hi(a) =
5:(a)3;(—1) and 3;(a) := X;(a)S; X;(1/a)S; * X;(a).

Our generating set coincides with the one in [9], and the presentation works just as well
for the simply laced spherical or affine Dynkin diagrams without A; components; see [3].
When R = Z the presentation simplifies considerably. We give it explicitly because this
entire paper grew from trying to understand the Kac-Moody group &g, ,(Z):

Corollary 2 (Presentation over Z). If A is simply laced hyperbolic, then the Steinberg
group St4(Z) has a presentation with generators S; and X;, where i varies over the
simple roots, and the relations listed in Table 3. The Kac—Moody group &a(Z) is the
quotient of Gta(Z) by the relation h;(—1)? = 1, for any singlei € I. O
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Table 2

Defining relations for &ta(R) when A is simply laced hyperbolic. The
generators are X;(t) and S; where ¢ varies over the nodes of the Dynkin
diagram and t and u vary over R. See Theorem 1 for the additional relations
needed to define 4 (R), and Corollary 2 for simplifications in the special
case R =Z.

Xi(t)Xi(u) = X;i(t+u)
(87, X:(1)] = 1 all i
Si = Xi(1)S: X (1)S;7 X, (1)
S:8; = 8;8;
[Si, X;(t)] =1 all unjoined i # j
[Xi(t), X;(u)] =1
5:8;8; = S;8:8;
578;87% = S;t
X;(£)8;8; = 8;8:X;(t)
SIX;(1)S;? = X7
[Xi(t), S X (u)S; 1
[Xi(t), X, (u) Si X, (tu)S;

all joined i # j

] =
] =

Table 3
Defining relations for St (Z) when A is simply laced hy-
perbolic; see Corollary 2.

[SE,XZ] =1 } .
all ¢

S = X;8:X;S;7'X,

SiS; = S;5;
[Si, X;] =1 all unjoined ¢ # j
X, X;] =1

8:8;8; = S;8:S;
578;87% = s;t
S7x;87% = X;t

[X:,S:X;87 '] =1

(X, X;] = SiX;8;"

all joined i # j

Remark. X;(u) in Theorem 1 corresponds to X} here; in particular X; = X;(1). Also,
one can show that h;(—1) = S;2 in Gts. So one could rewrite the relation h;(—1)? = 1
as St =1.

The next result follows from the evident fact that each relation in Table 2 involves
at most 2 subscripts. If R is a field then the &4 case is a special case of a result of
Abramenko and Miihlherr [1,18]; see also [11].

Corollary 3 (Curtis—Tits property of the presentation). Let R be a commutative ring and
A a simply laced hyperbolic Dynkin diagram. Consider the Steinberg groups Gtg(R) and
the obvious maps between them, as B varies over the singletons and pairs of nodes of A.
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The direct limit of this family of groups equals the Steinberg group &ta(R). The same
result holds with B4 in place of Sty throughout. 0O

As one might expect, this result allows one to deduce finite-presentation results about
Gta(R) from similar results about the groups Stg(R). The following theorem follows
immediately from Theorem 8 in the current paper (a restatement of Theorem 1) and
Thm. 1.4 of [2]. Of course, any finite presentation result will require some hypothesis
on R. But conceptually one might think of the presentation in Table 2 as “finite over R”
for any commutative ring R. By this we mean that the generators and relations have
finitely many forms, with some of the forms being parameterized by elements of R (or
pairs of elements).

Theorem 4 (Finite presentation). In the setting of Corollary 3, &ta(R) is finitely pre-
sented as a group if either

(i) R is finitely generated as a module over some subring generated by finitely many
units, or
(ii) tk A > 4 and R is finitely generated as a ring.

In either case, if the unit group of R is finitely generated as an abelian group, then G4 (R)
is also finitely presented as a group. O

Many mathematicians have worked on the question of whether S-arithmetic groups
in algebraic groups over adele rings are finitely presented. This was finally resolved in
all cases by Behr [6,7]. Since Kac-Moody groups are infinite-dimensional analogues of
algebraic groups, it is natural to ask whether their “S-arithmetic groups” are finitely
presented. The following result answers this, at least insofar as &4 is an analogue of an
algebraic group. It is an immediate application of Theorem 4.

Corollary 5 (Finite presentation in arithmetic contexts). Suppose K is a global field,
meaning a finite extension of Q or Fy(t). Suppose S is a nonempty finite set of places
of K, including all infinite places in the number field case. Let R be the ring of S-integers
in K.

Suppose A is a simply laced hyperbolic Dynkin diagram. Then &4(R) and St (R) are
finitely presented, except perhaps in the case that Tk A = 4, K is a function field and
IS|=1. O

Higher-dimensional finiteness properties are also very interesting. Their analysis for
most S-arithmetic subgroups of algebraic groups has recently been completed by Bux,
Kohl and Witzel [8]. One should be able to combine their results with Corollary 3 to
obtain higher-dimensional finiteness properties in the setting of Corollary 5.

A major motivation for this work came from the conjectural appearance of integral
forms of hyperbolic Kac-Moody groups as symmetries of supergravity and superstring
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theories [5]. Ejo is the “overextended” version of Eg, and the corresponding overex-
tended versions of Fg and FE7 also appear in Table 1. Hull and Townsend conjectured
that B g,,(Z) is the discrete “U-duality” group of Type II superstring theories [15]. And
by analogy with SL2(Z), Damour and Nicolai conjectured that &g, ,(Z) is the “mod-
ular group” for certain automorphic forms that are expected to arise in the context of
11-dimensional supergravity [13]. The role of Eqp in the physics conjectures is some-
what mysterious and not well understood. We began this work by pondering how to give
a “workable” definition of &g, (Z). We hope that our explicit finite presentation will
provide insight into these conjectures.

Our other major motivation was to bring Kac-Moody groups into the world of ge-
ometric and combinatorial group theory, leading to many new open questions such as
those raised in [3].

The methods of this paper use hyperbolic geometry in an essential way. In particular,
the proof of Theorem 8 relies on distance estimates in hyperbolic space. Therefore our
proofs do not extend to general Kac—-Moody groups. The simply-laced hypothesis could
probably be removed at the cost of additional hypotheses on R, since double and triple
bonds are known to cause complications over Fy. See [1] for this, in particular for the
suggestion that a Kac—Moody group over Fo might fail to be finitely presented when all
the nodes of its Dynkin diagram are joined to each other by double bonds. It is not clear
yet how well the results of this paper will extend to the general case. But the first author
has been able treat some Kac—Moody groups beyond the hyperbolic cases of this paper.
These results will appear separately.

The first author is very grateful to the Japan Society for the Promotion of Science,
and the second author is very grateful for the support and hospitality of the IHES. Both
authors are very grateful to Kyoto University for its support and hospitality. The first
author was supported by NSF grant DMS-1101566.

2. The Curtis—Tits presentation for Steinberg groups

We fix a simply laced hyperbolic Dynkin diagram A and a commutative ring R. We will
briefly review Tits’ definition of Gt (R), recall the “pre-Steinberg group” PSt 4 from [2],
prove that PGSt — Sty is an isomorphism (Theorem 8), and deduce Theorem 1.

Regarding A as a generalized Cartan matrix, it is symmetric. So we may regard it
as the inner product matrix of the simple roots and then extend linearly to the root
lattice A. We indicate this inner product by “-”. By the norm, a2, of an element o € A,
we mean « - o. The simple roots «; have norm 2, and reflections w,, in the «a; are
isometries of A. The Weyl group W is the group generated by the wq,. The W-images
of the simple roots are called real roots, and we write ® for the set of them. Since the
inner product is W-invariant, all real roots have norm 2.

The group Gt4(R) is defined as a certain quotient of the free product #4ce Uy, where
$,, is a copy of the additive group of R. A standard difficulty in Lie theory is that it is
impossible to distinguish a single “best” isomorphism i, = R. Instead, there is a natural
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pair of parameterization R — {l,, differing by inversion. (Tits refers to the “double bases”
of the root spaces [21, §3.3].) For each o € ® we fix one of these isomorphisms and call
it X,, so the X, (t) with ¢ € R are the elements of l,, with the obvious group operation.
The sign in Lemma 6 below depends on this choice, but only in a way that won’t affect
any of our arguments. We remark also that our presentation in Table 2 does not involve
a choice of X, for every a € ®. We made such a choice only for the simple roots «.
This choice for the simple roots does not distinguish any “natural” choices for the other
roots. For example, if i and j are joined, then ¢ + S;X;(¢)S; ! and ¢ S’in(t)S’;l are
the two possibilities for Xy, +,, which by symmetry are equally preferable. Happily, we
do not need our choices to be natural in any way: one may choose the X e arbitrarily.
Describing the relations requires a preliminary definition. Let («, 8) be a pair of real
roots. Then (o, 8) is called a prenilpotent pair if there exist w, w’ € W such that

wa, wh € &, and w'a, w'B € d_.
One can show that a pair of real roots {a, §} is prenilpotent if and only if o # —3 and
(Nae+Ng)Nn @

is a finite set (see for example [12]).
The relations in Gt4(R) are the following: for each prenilpotent pair «, 5 and each
pair t,u € R, there is a relation

[(Xa(t), Xp(u)] = II Xy (v), (1)

y€@N(Na+NB)—{a,B}

where the v’s on the right side depend on «, 3,t,u, the ordering on the 4’s, and the
chosen isomorphisms from R to il,, {3 and the l,’s. (A consequence of prenilpotency
is that the product has only finitely many factors.) The following lemma describes the
prenilpotent pairs in our situation, and makes these relations explicit. Gt4(R) is the
quotient of *,ce Uy by all of these relations.

Lemma 6. Suppose A is simply laced and hyperbolic. Then distinct real roots o, € ®
form a prenilpotent pair just if a.- f > —1. The corresponding relations in Gts(R) are

Xotp(Etu) ifa-f=-1
1 otherwise

X0 Xa(0)] = {
forallt,u € R.

We remark that if a- 8 = —1 then « + f is also a real root, so the first case makes
sense. The sign in X4 5(+tu) depends on the choices of isomorphisms X, X3, X413
from R to i, Ug, Uyig. But we will not use the relation itself, merely the fact that
Uatp = [ta, Ug]-
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We will use the following special features of the hyperbolic case. First the signature
of Ais (tk A —1,1), so the vectors in A ® R of norm < 0 fall into two components. The
fundamental chamber

C:={z€eA®@R:z-a; <0 forall i}

meets only one of these components, which we call the future cone F. The projectiviza-
tion of F' is a copy of real hyperbolic space of dimension n := rk A — 1, for which we
write H™. Second, C lies in the closure F, and its projectivization PC is a hyperbolic
simplex together with its ideal vertices. The reason for this is that the Coxeter diagram
underlying A is that of a finite-covolume hyperbolic reflection group; see [16, §§6.8-6.9].
The Weyl group W is defined as the group generated by the reflections in the simple
roots, and the Tits cone is defined as the union of the W-images of C. We can now state
the third special property: the interior of the Tits cone is exactly the future cone. One
direction is obvious: since C' C F and W preserves the open set F, the interior of the
Tits cone lies in F. For the other direction, one must show that the W-translates of
C N F cover F. This is part of Poincaré’s polyhedron theorem. A very clean treatment
in the case of reflection groups appears in [14, Thm. 60].

Proof of Lemma 6. First we use the coincidence of F with the Tits cone’s interior to
rephrase prenilpotency as follows. Claim: real roots a, B form a prenilpotent pair if and
only if some vector of F has positive inner product with both of them, and some other
vector of F' has negative inner product with both of them. This follows from the following
observation. Fix a vector v in the interior of C' and recall that ®* consists of the real roots
having negative product with it, and similarly for ®~. Then for any w € W, w sends
a, B into ®* (resp. ®7) if and only if a, 8 have negative (resp. positive) inner product
with w™1(v) € F.

Now suppose a, 3 € ®. Since A ® R has signature (n,1), - and f+ meet in F just
if the inner product matrix of « and f is positive definite, i.e., just if o - 5 € {0, £1}.
(Here 1 indicates the orthogonal complement in A ® R.) In this case a and 3+ are
transverse at a point of o~ N B+ N F. Obviously we may choose a nearby element of F
on the positive side of both, and another element of F' on the negative side of both. So
in this case the pair is prenilpotent.

If a- 8 < —2 then their positive half-spaces in F' are disjoint. Therefore it is impossible
to choose a point of F that is on the positive side of both ot and 8. So the pair is not
prenilpotent.

If a- 8 > 2 then one positive half-space in F’ lies inside the other, so obviously there is
a point in the intersection, and similarly in the intersection of the negative half-spaces.
So the pair is prenilpotent. This finishes the proof of the first claim.

If -8 = —1, then «, are simple roots for an Ay root system and the displayed
relation is the corresponding Chevalley relation. If a- 8 > 0 then the only roots v in
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Na+ Npj are « and 8 (indeed these are the only vectors of norm < 2). Since the product
on the right side of the Chevalley relation (1) is empty, the relation is [y, Hg] =1. O

We mentioned above that PC C H" is a hyperbolic simplex. Its facets have a curious
geometric property that turns out to be the key to our proof of Theorem 1. We have not
seen anything like it in Kac—-Moody theory before. Recall that the hyperbolic distance
between two points of H™, represented by vectors x,y € F, is cosh™? W

Lemma 7. Suppose ¢ is any facet of the projectivized Weyl chamber PC and p is any
point of ¢. Then there is a facet ¢’ of PC that makes angle w/3 with ¢, such that the
hyperbolic distance d(p, ¢ N ¢') is at most cosh™ \/4/3 ~ 0.549.

Proof. We applied the following argument to each of the 18 possibilities for A. We write I
for the set of A’s nodes, and for ¢ € I we write ¢; for the corresponding facet of PC. We
also fix elements w; € A ® Q with w; - a; = —1 or 0 according to whether 4,5 € I are
equal or not. In Lie terminology these are the fundamental weights. Geometrically, w;
represents the vertex of PC opposite ¢;.

We applied the following argument to each of the rk A many possibilities for ¢ := ¢;.
We write J for the set of j € I that are joined to i. We define ¢ as the point of H"
represented by the sum of the w;c ;. It lies in the interior of the face of ¢ that is opposite
(in ¢) to the face ¢ N (Njes¢;) of ¢. For each j € J we write K for the convex hull
of ¢ and ¢ N ¢;. By the property of ¢ just mentioned, PC is the union of the K;. For
every j € J we found by inner product computations that cosh? (d(q, oN ¢j)) <4/3. In
surprisingly many cases we found equality. We used the PARI/GP package [19] for the
calculations.

Now, given p € ¢, it lies in K for some j € J, and we set ¢' = ¢;. By K;’s definition,
q is its point furthest from ¢ N ¢’. So

d(p,¢N¢') < d(q,¢N¢’) < cosh™+/4/3. O

At the beginning of this section we mentioned the pre-Steinberg group PSt,. It is a
group functor defined in [2], by the same definition as the Steinberg group, except that
we only impose the Chevalley relations for prenilpotent pairs «, 8 that are classically
prenilpotent. This means that (Qa + QB) N ® is finite and o+ 8 # 0. Arguing as in the
proof of Lemma 6 shows that this is equivalent to o = 8 or - 8 € {0, £1}. After stating
the following theorem about ‘P&t ,, we will show how Theorem 1 reduces to it. Then we
will prove it.

Theorem 8. The natural map PSt,(R) — Sta(R) is an isomorphism.

Proof of Theorem 1, given Theorem 8. Theorem 1.2 of [2] gives an explicit presentation
for PSt 4 (R), namely the one in Table 2. So Theorem 8 is identical to the first part of
Theorem 1.
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For the second part, we recall that Tits defined & 4(R) as the quotient of Gta(R) by
the relations h;(a)hi(b) = hi(ab) for all i € I and all units a,b of R. In fact imposing
these relations for a single ¢ automatically gives the others too. This follows from the
fact that all roots are equivalent under the Weyl group, because A is simply laced. O

Proof of Theorem 8. We must show that the Chevalley relations for classically prenilpo-
tent pairs imply all the other Chevalley relations. We will abbreviate P&t,(R) and
Gt (R) to PGSt and St.

By Lemma 6, any prenilpotent pair has inner product > —1. Therefore it suffices to
prove the following by induction on k > —1: for every prenilpotent pair «, 8 € ® with
a - B = k, the Chevalley relations of a and 8 in &t already hold in B&St. If a =
then the Chevalley relations say merely that i, is commutative, which follows from the
multiplication rules in i,. So we will suppose a # (. If k € {0, %1} then the pair is
classically prenilpotent, so this holds by definition of PSt.

So suppose k := a - 8 > 2. By Lemma 6, the Chevalley relation we must establish is
[Ua, Ug] = 1. We will exhibit roots o/, o with

o +ad = q, o >0, and o' -B>0. (2)

It follows that both these inner products are less than k. By induction we get [y, ] =
[Uorr, Ug] = 1. Since @ = o' + &', we have U, = [q, Lho]. Since Up commutes with H,
and U, , it also commutes with i, as desired.

It remains to construct o and «”. We distinguish two cases: k = 2 and k > 2. First
suppose k = 2. What is special about this case is that the span of o and [ is degenerate:
v := a — (3 is orthogonal to both and has norm 0. It will suffice to exhibit o' with
o -a=da - p =1, for then we can take o” := a — o’ and apply the previous paragraph.

Since FU (713') is the set of vectors of norm < 0, we have v € +F. By exchanging o, 3
we may suppose without loss that v € F. We fix a vector z € A in the interior of C' and
consider its inner products with the images of ¥ under the Weyl group W. These inner
products are integral because = € A, and nonpositive because x- F' C (—00,0). Therefore
they achieve their maximum, which is to say: after replacing «, 8 by their images under
an element of W we may suppose without loss that v - © = max,ew w(v) - . This
maximality forces v - a; < 0 for all 7, for if v - «; > 0 then reflection in «; increases v’s
inner product with z. So v € C'. That is, it represents an ideal vertex of PC.

The simple roots orthogonal to v correspond to the nodes of an irreducible affine
subdiagram A" of A, and the W-stabilizer of v is the Weyl group of A”. By replacing
«, B by their images under an element of this stabilizer, we may suppose without loss
that « is a simple root corresponding to a node of A”. Since every node of A is joined
to some other node of A, « lies in some Aj root system in A”. Inside this Ay is a root
o’ having inner product 1 with «. Since o is orthogonal to v, it also has inner product 1
with 3. This finishes the case k = 2.
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Now for the inductive step: fixing k > 3, we seek roots o, o’ with the properties (2).
Regarding ot and B as hyperplanes in H”, we define p,q € H" as follows. First, p is
the point of at closest to 3+. Second, ¢ is a point of a, which is orthogonal to some
real root o’ with o - o = 1, and closest possible to p among all such points. Because
p lies on some facet of some chamber, Lemma 7 shows that such an o' exists, so the
definition of ¢ makes sense. It also shows that d(p, q) is at most cosh™* \/m

Together, @ and o’ span an As root system, of which o’ := a — o’ is another root.
To prove 0 < 8-’ and 0 < 8- a”, suppose otherwise, say 8- a’ = m < 0. The idea is to
work out p and ¢ explicitly and find that d(p, q) is larger than cosh™! \/m, which is a
contradiction. The inner product matrix of o, o/, 3 is

2 1 k

1 2 m

k m 2

and (a vector representing) p is the projection of b to a*, i.e., p = 8 —a(3-a)/2. Now, ¢
is the projection of p to a Na’*, or equivalently a N (a” —a’)*. The advantage of the
latter description is that « is orthogonal to o’ — o’. Since p is already orthogonal to «,
projecting it to this codimension 2 subspace is the same as projecting it to (o — a/)*.
For calculations in our basis we note that o’ —a’ has norm 6 and we rewrite it as a—2a’.
Sogq=p—(a—2a)(p- (- 2a'))/6. Calculation reveals

o [4 3+ km—kZ—m?
_ 1
d(p, q) = cosh \/3 12

By applying 9/0m to the radicand and using m < 0 and k > 3, one checks that the right

side is decreasing as a function of m. Therefore d(p, q) is at least what one would get by
plugging in 0 for m:

4
d(p,q) > cosh™! 3

By differentiating one shows that the right side is decreasing in k. So d(p,q) is larger
than the limit as k — oo, which is cosh™' y/ 4/3. This is a contradiction, proving the
claim. 0O

Remark. The origin of the proof was picture-drawing in the hyperbolic plane associated
to the span of , a/, 3. We recommend sketching the configuration of at, o/ +, o/ + and
B+ when m = 0, and contemplating how it would change if m were negative. When
m = 0, the quadrilateral spanned by p,q and their projections to S converges to a
(2,3, 00) triangle as k — oco. So the constant cosh™* \/m is the length of the short edge
of the (2,3,00) triangle in H?2. It is curious that this bound in Lemma 7, which was

optimal, is only barely sufficient for the proof of Theorem 8.
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