期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:546 |
On the radius of the category of extensions of matrix factorizations | |
Article | |
Shimada, Kaori1  Takahashi, Ryo2,3  | |
[1] Meiji Univ, Sch Sci & Technol, Dept Math, Tama Ku, 1-1-1 Higashi Mita, Kawasaki, Kanagawa 2148571, Japan | |
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan | |
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA | |
关键词: Dimension; Hypersurface; Matrix factorization; Maximal Cohen-Macaulay module; Radius; Singularity category; | |
DOI : 10.1016/j.jalgebra.2019.10.054 | |
来源: Elsevier | |
【 摘 要 】
Let S be a commutative noetherian ring. The extensions of matrix factorizations of non-zerodivisors x1, ... , x(n) of S form a full subcategory of finitely generated modules over the quotient ring S/(x(1) ... x(n)). In this paper, we investigate the radius (in the sense of Dao and Takahashi) of this full subcategory. As an application, we obtain an upper bound of the dimension (in the sense of Rouquier) of the singularity category of a local hypersurface of dimension one, which refines a recent result of Kawasaki, Nakamura and Shimada. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2019_10_054.pdf | 323KB | download |