期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:414 |
Frattini argument for Hall subgroups | |
Article | |
Revin, Danila Olegovitch1,2  Vdovin, Evgeny Petrovitch1,2  | |
[1] Sobolev Inst Math, Novosibirsk 630090, Russia | |
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia | |
关键词: Finite group; Hall subgroup; Normal structure of group; | |
DOI : 10.1016/j.jalgebra.2014.04.031 | |
来源: Elsevier | |
【 摘 要 】
In the paper, it is proved that if a finite group G possesses a pi-Hall subgroup for a set pi of primes, then every normal subgroup A of G possesses a pi-Hall subgroup H such that G = AN(G)(H). (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2014_04_031.pdf | 293KB | download |