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Introduction

One of the most frequently used statements in the finite group theory is the follow-
ing evident corollary to the Sylow theorem on the conjugacy of Sylow p-subgroups [1],
2, (6.2)].

Proposition (Frattini argument). Let A be a normal subgroup of a finite group G, and
let S be a Sylow p-subgroup of A for a prime p. Then G = ANg(S).
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Notice that if A is normal in G, then the action of G by conjugation on the set of
subgroups of A induces the action of G on the set

{74 | H < A}

of conjugacy classes of subgroups of A (here and thereafter, for a subgroup H of G, we set
HY = {HY9 | g € G}). Moreover, the stabilizer of the class H* consisting of subgroups
conjugate with H in A coincides with ANg(H). Thus, the equality G = ANg(H) is
equivalent for H4 to be invariant under the action of G, or in other words, is equivalent
to the equality H* = HE (cf. [2, (6.3)] for example).

Analogs of the Frattini argument are valid not only for Sylow subgroups, but also
for some other classes of subgroups. For example, it is proved in [3] that every normal
subgroup A of a finite group G possesses a maximal solvable subgroup S such that
G = ANg(S), and, as a consequence, in every finite group, there is a subgroup that is a
solvable injector and a solvable projector simultaneously.

The notion of a m-Hall subgroup is a natural generalization of the notion of Sylow
subgroup. Let 7 be a set of primes. A subgroup H of a finite group G is called a 7-Hall
subgroup, if all prime dividers of the order of H lie in m, while the index of H is not
divisible by the elements of 7. We denote by Hall,(G) the set of m-Hall subgroups of a
finite group G.

The Hall theorem states that, in a solvable group, w-Hall subgroups exist and are
conjugate for every set 7 of primes. As a corollary, in every finite solvable group, for
every set 7 of primes, a complete analogue of the Frattini argument for m-Hall subgroups
holds. However, given a set 7 of primes, in a nonsolvable finite group 7-Hall subgroups
may fail to exist, and, even if they exist, they can be nonconjugate.

According to [4], we say that G satisfies E, (or, briefly G € E,) if Hall,(G) # @. If
G € E, and all m-Hall subgroups are conjugate then we say that G satisfies C. (G € Cy).
A group satisfying F or C} is called also an E.- or a Cr-group, respectively.

It is easy to show that if A is a normal subgroup of a finite group G and A € C;; for
some 7 then G = ANg(H) for every w-Hall subgroup H of A. This notice is a key idea
in the proof of the famous Chunikhin theorem [5, (3.12)], claiming that an extension of
a Cr-group by a Cr-group is a Cr-group as well. In general, distinct analogues of the
Frattini argument for Hall subgroup are of extraordinary importance in the study of Hall
subgroups and generalizations of the Sylow theorem (see [4,6-26]).

The following statement is the main result of the paper.

Theorem 1 (Frattini argument for Hall subgroups). Let G € E, for some set  of primes
and A<G. Then there exists a w-Hall subgroup H of A such that G = ANg(H). Moreover
N¢g(H) € E; and every w-Hall subgroup of Ng(H) is a w-Hall subgroup of G.

Remark 1. It is well known that, if A<<G and H is a w-Hall subgroup of G, then HN A is
a m-Hall subgroup of A (see Lemma 1). Thus, the condition G € E in Theorem 1 implies
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A € E,. However we cannot replace the condition G € E, with a weaker condition
A € E,. Indeed, let 7 = {2,3} and A = GL3(2) = SL3(2). Then A possesses exactly two
classes of conjugate m-Hall subgroups with the representatives

Hl(GL;(Q) ) HQ( GLZ@))'

The class H{* consists of the line stabilizers in the natural module for G, while H3' con-
sists of the plane stabilizers. The map ¢ : 2 € A + (2*)~! is an automorphism of order 2
of A (here and below x! is the transpose of ). This automorphism interchanges the
classes H{* and H3'. Consider the natural split extension G = A : (1). Then Ng(H) < A
for every m-Hall subgroup H of A and, in particular, ANg(H) = A < G. Indeed, since
|G : A| = 2, the assertion Ng(H) %« A would imply G = ANg(H) and HY = H4, in
particular H* € HA. But in this case the automorphism ¢ would leave the class H* in-
variant, a contradiction. Now G ¢ E, since otherwise, in view of the identity |G : A| = 2,
the equality G = AK would hold for every m-Hall subgroup K of G and, in particular,
K & A. Since K N A is a m-Hall subgroup of A and K < Ng(K N A) it follows that
G = ANg(K N A), a contradiction.

Remark 2. If one compares the conclusion of Theorem 1 with the original Frattini ar-
gument, it will be natural to ask, whether the identity G = ANg(H) holds for every
m-Hall subgroup H of A, or at least for every subgroup of the form H = K N A, where
K is a m-Hall subgroup of G, if the condition of Theorem 1 is satisfied? This question
has a negative answer. Indeed, let 7 = {2,3} and S = GL3(2). Suppose that subgroups
H, and H, are defined in the same way as in Remark 1. Consider the direct product

A=89x%x---x8.
—_——

5 times

Now A admits an automorphism 7 : (21, s, ...,25) — (z5,21,...,24) and we denote by
G the natural semidirect product of A and (7). Since |G : A| =5 is a prime, 5 ¢ 7, and
A <G, the sets Hall;(G) and Hall;(A) coincide. Consider m-Hall subgroups

Kl :Hl X XHl XHQ,
—_———
4 times
KQZHQXH1X~~~><H1
Sy —
4 times
of A (hence also of G). Clearly, K1 = KJ, but K7 and K> are not conjugate in A. Thus,

the conjugacy classes of K; and K5 in A are distinct, while they are fused in G. Whence
G # ANg(K;),i=1,2.

As a corollary to Theorem 1 we obtain the main result of [19], thus we give a simpler
proof to the following statement.
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Corollary 1. If G € C,, AL G and H is a w-Hall subgroup of G, then HA € C,.

Corollary 2. Let A be a normal subgroup of G. Then G € E,. if and only if A € E,,
G/A € E, and there exists H € Hall,(A) such that H* = HC.

Corollary 3. Let G € E;, A < Aut(G) and (|G|,|A|) = 1. Then there exists an
A-invariant w-Hall subgroup H of G.

1. Preliminary results

We always denote by 7 a set of primes and by 7’ the complement to 7 in the set of
all primes. An integer n is called a m-number if every prime divisor of n belongs to .
A group G is called a m-group if |G| is a m-number.

Lemma 1. Let A be a normal subgroup of G. If H is a w-Hall subgroup of G, then HN A
is a w-Hall subgroup of A, and HA/A is a w-Hall subgroup of G/A.

Proof. See [5, Chapter IV, (5.11)]. O

Recall that a finite group G is said to be w-separable, if there is a normal series of G
with all factors being either 7- or 7’-groups.

Lemma 2. Fvery m-separable group satisfies C.
Proof. See [5, Chapter V, Theorem 3.7]. 0O

Lemma 3. Let A be a normal subgroup of G such that G/A is a w-group, let U be a w-Hall
subgroup of A. Then a w-Hall subgroup H of G with H N A = U exists if and only if
Uc =uA.

Proof. See [14, Lemma 2.1(e)]. O

Lemma 4. Let A be a normal subgroup of an Ep-group G. Then for every K/A €
Hall,(G/A) there exists H € Hall,(G) such that K = HA.

Proof. See [15, Corollary 9]. O

If S is a subnormal subgroup of G, then by Hallf(S) we denote the set of subgroups
of type H N S, where H € Hall,(G). Clearly Hall®(S) is a union of several classes of
conjugate m-Hall subgroups of S, and let k& (S) be the number of these classes.

Recall that a subgroup generated by all minimal normal subgroups is called the
socle. A group is called almost simple, if its socle is a finite simple nonabelian

group.
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Lemma 5. Let 7 be a set of primes and G be an almost simple E,-group with (nonabelian
simple) socle S. Then the following hold.

(1) If2 ¢ 7, then kG(S) = 1.
(2) If3 ¢ m, then k& (S) € {1,2}.
(3) If2,3 €, then kG(S) € {1,2,3,4,9}.

In particular, kS (S) is a m-number.
Proof. See [14, Theorem 1.1]. O

Lemma 6. Let w be a set of primes, G be an almost simple E.-group with socle S and
T < G. Consider the action of T on

2 ={(HnS)®| H € Hall,(G)}

by conjugation. Then the following hold:

(1) if kKG(S) # 9, then the length of every orbit is a T-number;
(2) if KS(S) =9, then there exists an orbit such that its length is a m-number.

Proof. By definition, k¢ (S) = [£2|. Consider an orbit A of T on 2. Since |A| < |92,
Lemma 5 implies that either |A| is a m-number, or 2,3 € m, k¢(S) = 9, and |A| €
{5,7}. In the last case, the action of T' on {2 is intransitive, every orbit under this
action with the exception of A has the length at most |2] — |A| < 4, and so is a
m-number. O

Lemma 7. Let G be an almost simple E.-group, S be the socle of, and H € Hall,(G).
Then, for some H € Hall,(G), the equality (H N S)¢ = (H N S)° holds.

Proof. Consider
Q2 ={(HNS)® | H € Hall(G)}.

Let T/S be a n'-Hall subgroup of a (solvable) group G/S. Consider the action of T' on
{2 induced by the action of T" on the set of subgroups of S via conjugation. By Lemma 6
it follows that T' possesses an orbit A of length being a m-number. On the other hand,
since S is included in the kernel of the action of T on (2 and since T'/S is a ©’-group we
obtain that |A| is a 7’-number. Hence |[A| = 1.

Thus, (HNS)" = (HNS)S for some H € Hall,(G). Since G = HT we also have

(HNS)Y =(HNS)AT = (HNS)T = (HNS)",

and the lemma follows. O
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Let A, B, H be subgroups of G such that B < A. By Ny(A/B) we denote the
intersection Ny (A) N Ny (B). Then each element z € Ny(A/B) induces an auto-
morphism on A/B acting by Ba +— Bz 'ax. Thus there exists a homomorphism
Ny (A/B) — Aut(A/B). Denote by Auty(A/B) the image of the homomorphism and
call it a group of H-induced automorphisms on A/B. The kernel of the homomorphism
is denoted by Cp(A/B). If B =1, then Auty(A/B) is denoted by Autz(A).

Lemma 8. Let S be a simple subnormal subgroup of an Er-group G. Then Autg(S) € E.
Proof. There exists a composition series
1=Gp<G1 <+ <G =G

of G such that S = G;. The claim of the lemma follows from [15, Theorem 4] and the
equality Autg(G1/Go) = Autg(S). O

Lemma 9. Let S be a simple subnormal E-subgroup of G and U € Hall,(S). Choose a
right transversal g1, ..., gn for Ng(S) in G and let

V=(U%|i=1,...,n).

Then V € Hall, ((S)).

Proof. One may assume that S is nonabelian. Let A = (S%). Since S is nonabelian
simple, we derive that A is a direct product of S9:,..., 59 and, as a consequence, V is
a direct product of U9, ..., U9". In particular, V is a w-group and |A : V| = |S : U|" is
a m’-number, i.e. V € Hall(4). O

Lemma 10. Let S be a simple subnormal subgroup of G and a subgroup U of S be chosen
so that the equality UAe(S) = US holds. Take a right transversal gy, ..., gn for N¢g(9)
in G. Let

A= (59

i:l,...,n> and V=<U97‘

1=1,..., n>
Then A = (S%) <G and V¢ = VA. Moreover, if U € Hall,(S), then V € Hall,(A).

Proof. In view of the choice of elements gy, ..., gn, for every g € G we have S9 € {59 |
i=1,...,n} and so A = (S%) < G. Notice also that since S is simple and subnormal,
we have [S9,59] =1 for i # j.

Let g € G. There exist a permutation o € Sym,, and z1,...,2, € N¢g(S) such that
9ig = Z;gir- Now consider v; € Autg(S), where the map ; : S — S is given by s > s%i.
By condition, U* = U"Y = U* for some s; € S. Set a; = sf;,l and a = a1 ---- - ap.
Clearly a € A. We remain to show that V9 = V¢, and therefore the equality V¢ = V4
holds.
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By the definition, it follows that a; € S9 and U9 = U%%. We have

VI=(U% |i=1,...,n) =(U"% |i=1,...,n)
= (U*9 |i=1,...,n) = (U%e19 | i=1,...,n)

— (U=t [i=1,...,n) = (U%% | i=1,...,n)
:<Ugia‘i:1,...,n>:Va,

and the lemma follows. O
2. Proof of the main results

Proof of Theorem 1. Let G € E,; and A < G. We show by induction by the order of G,
that A possesses a m-Hall subgroup H such that G = ANg(H).

If G is simple, we have nothing to prove.

Firstly, consider the case, where A is a minimal normal subgroup of G. Let S be
a minimal subnormal subgroup of A. By Lemma 8 we have Autg(S) € E,. Lemma 7
implies that S possesses a m-Hall subgroup U such that UA"<(5) = 7S, Choose a right
transversal g1, ..., g, of G by Ng(S), and let

H=U!|i=1,...,n).

Since A is a minimal normal subgroup of G we obtain A = (S¢). By Lemma 9, H is
a m-Hall subgroup of A. By Lemma 10 it follows that H¢ = H* or equivalently G =
ANg(H).

Thus we may assume that there exists a minimal normal subgroup M of G such that
M < A. As we proved above, the identity G = M Ng(V) holds for a m-Hall subgroup V'
of M. Set K = N¢ (V). Notice that by Lemma 3 the identity V' = M NT holds for some
m-Hall subgroup T of G. Since V.= M NT < T, it follows that T < K, whence K € E.

Suppose, K < G. By induction, K = (K N A)Ng(H) for some H € Hall, (K N A).
Notice that |A : (K N A)| divides |A : (T N A)|, since T < K. Now (T'N A) € Hall;(A4),
hence |A : (K N A)| is a n’-number and Hall, (K N A) C Hall,(A). In particular, H €
Hall(A). We have

G=MK=MKNA)Nk(H) < ANqg(H).
Now assume that K = G, i.e. V < G. By induction
G/M = (A/M)Ng/m(X/M) = ANg(X)/M

for some X/M € Hall(A/M) and thus G = ANg(X).
Suppose that V' # 1, i.e. M = V. Then X € Hall;(A), and the conclusion of the
theorem holds.
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Consider the remaining case V = 1. In other words, consider the case, where M is
a 7'-group. By the Schur—Zassenhaus theorem [2, Theorem 18.1], X possesses a m-Hall
subgroup H, moreover H € Hall (A) and X = HM. Let g € G. In view of the identity
G = AN¢(X) there exists a € A such that X9 = X® Now HY and H® are m-Hall
subgroups of X9 and, by the Schur—Zassenhaus theorem, HY and H® are conjugate
in X9 < A. Hence, H and HY9 are conjugate in A, the class H4 is G-invariant and
G = ANg(H).

In order to complete the proof, it remains to show that if G € E,, A< G and H €
Hall,(A) is such that G = ANg(H), then Ng(H) € E, and Hall,(Ng(H)) C Hall,(G).

Notice that

Ne(H)/Na(H) = ANG(H)/A = G/A € B,

by Lemma 1. Lemma 3 implies that a complete preimage of a w-Hall subgroup of
Ng(H)/Na(H) possesses a m-Hall subgroup Y such that Y N N4 (H) = H. Notice that
|A: (ANY)| divides |A : H| and so it is a 7’-number. Since |[Ng(H) : Y Al is a n’-number,

INg(H) : Y| =|Ng(H) : YA||[YA: Y| =|Ng(H) : YA||A: (ANY)|
is a w’-number as well. Therefore Y € Hall(Ng(H)) and Ng(H) € E,. Now
|G : Na(H)| = |ANG(H) : No(H)| = |A: Na(H)|
divides |A : H| and so is a 7’-number. Whence
Hall, (Ng(H)) C Hall, (G),
and the theorem follows. O

Proof of Corollary 1. Let G € Cr, A< G, and H € Hall(G). We need to show that
HAeC,.
Let

I'={KNA|K cHall.(G)}.

In view of G € C};, G acts transitively on I" by conjugations.

By Theorem 1, there exists X € Hall(A) such that G = ANg(X) (equivalently,
X% = X4), Ng(X) € E,, and Hall,(Nx(K)) C Hall,(G). Choose arbitrary Y €
Hall; (Ng(X)). It is easy to see that Y N A = X and so X € I'. By the transitivity of G
on I we have I' = X% = X4, and this identity implies the transitivity of A on I

Now choose arbitrary K € Hall,(HA) C Hall,(G). Since HNAe€I'and KNA€T,
by the transitivity of A on I, there exists a € A < HA such that K N A= H*N A. The
group Nga(H® N A) is m-separable, since all sections of the normal series
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Nua(H*NA)>No(H*NA)>H*NA>1

are either m- or 7'-groups. Hence Nya(H®* N A) € C, by Lemma 2. Now H* K €
Hall,(Nga(H®* N A)), so there exists © € Nya(H® N A) such that K = H*. Thus we
obtain that arbitrary K € Hall,(H A) is conjugate with H in HA, whence HA € C,. O

Proof of Corollary 2. Let A JG.

Suppose, A € E,, G/A € E;, and H* = H® for some H € Hall(A). Let M be the
full preimage of a m-Hall subgroup of G/A. Then M € E, in view of Lemma 3 and,
moreover, Hall, (M) C Hall (G), since |G : M| = |G/A : M/A| is a m-number. Thus,
G e E;.

The converse statement is a straight consequence of Lemma 1 and Theorem 1. 0O

Proof of Corollary 3. Let G € E; and A < Aut(G) with (|G|, |A|) = 1. Denote by G*
the natural semidirect product of G and A. Then G* € E, and, by Theorem 1, there
exists H € Hall,(G) such that G* = GNg~(H). Furthermore,

Ne-(H)/Ng(H) = G*/G = A.

Hence (|[Ng«(H)/Ng(H)|,|Ne(H)|) = 1. In view of the Schur—Zassenhaus theorem |2,
Theorem 18.1], there is B < Ng»(H) isomorphic to A and A = B?® for some z € G*.
Now

A= DB* < Ng+(H)* = Ng~ (Hm)
and H? is an A-invariant w-Hall subgroup of G. O
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