JOURNAL OF ALGEBRA | 卷:339 |
Monomorphism categories, cotilting theory, and Gorenstein-projective modules | |
Article | |
Zhang, Pu | |
关键词: Monomorphism category; Cotilting modules; Gorenstein-projective modules; | |
DOI : 10.1016/j.jalgebra.2011.05.018 | |
来源: Elsevier | |
【 摘 要 】
The monomorphism category S(n)(X) is introduced, where X is a full subcategory of the module category A-mod of an Artin algebra A. The key result is a reciprocity of the monomorphism operator S(n), and the left perpendicular operator (perpendicular to): for a cotilting A-module T. there is a canonical construction of a cotilting module m(T) over the upper triangular matrix algebra T,,(A), such that S(n)((perpendicular to)T)= (perpendicular to)m(T). As applications, S(n)(X) is a resolving contravariantly finite subcategory in T(n)(A)-mod with <(S(n)(X))over cap> = T(n)(A)-mod if and only if X is a resolving contravariantly finite subcategory in A-mod with (X) over cap = A-mod. For a Gorenstein algebra A. the category T(n)(A)-gproj of Gorenstein-projective T(n)(A)-modules can be explicitly determined as S(n)((perpendicular to)A). Also, self-injective algebras A can be characterized by. the property T(n)(A)-gproj = S(n)(A). Finally, we obtain a characterization of those categories S(n)(A) which have finite representation type in terms of Auslander's representation dimension. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2011_05_018.pdf | 272KB | download |