Canadian mathematical bulletin | |
Exact Morphism Category and Gorenstein-projective Representations | |
Xiu-Hua Luo1  | |
[1] Department of Mathematics, Nantong University , Nantong 226019, P. R. China | |
关键词: representations of a quiver over an algebra; exact representations; Gorenstein-projective modules; | |
DOI : 10.4153/CMB-2015-051-6 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Let $Q$ be a finite acyclic quiver, $J$ be an ideal of $kQ$ generatedby all arrows in $Q$, $A$ be a finite-dimensional $k$-algebra. Thecategory of all finite-dimensional representations of $(Q, J^2)$ over$A$ is denoted by $operatorname{rep}(Q, J^2, A)$. In this paper, weintroduce the category $operatorname{exa}(Q,J^2,A)$, which is asubcategory of $operatorname{rep}{}(Q,J^2,A)$ of all exact representations.The main result of this paper explicitly describes the Gorenstein-projective representations in $operatorname{rep}{}(Q,J^2,A)$,via the exact representations plus an extra condition.As a corollary, $A$ is a self-injective algebra, ifand only if the Gorenstein-projective representations are exactly theexact representations of $(Q, J^2)$ over $A$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050577173ZK.pdf | 21KB | download |