期刊论文详细信息
JOURNAL OF ALGEBRA 卷:462
Harbourne, Schenck and Seceleanu's Conjecture
Article
Miro-Roig, Rosa M.1 
[1] Fac Matemat, Dept Algebra & Geometria, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词: Weal Lefschetz property;    Powers of linear forms;    Artinian algebras;   
DOI  :  10.1016/j.jalgebra.2016.05.020
来源: Elsevier
PDF
【 摘 要 】

In [2], Conjecture 5.5.2, Harbourne, Schenck and Seceleanu conjectured that, for r = 6 and all r >= 8, the artinian ideal I = (l(1)(2),..., l(r+1)(2)) subset of K[x(1),...,x(r)] generated by the square of r+1 general linear forms l(i) fails the Weak Lefschetz property. This paper is entirely devoted to prove this Conjecture. It is worthwhile to point out that half of the Conjecture - namely, the case when the number of variables r is even - was already proved in [5], Theorem 6.1. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2016_05_020.pdf 326KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次