JOURNAL OF ALGEBRA | 卷:473 |
Quantum group of type A and representations of queer Lie superalgebra | |
Article | |
Chen, Chih-Whi1  Cheng, Shun-Jen2  | |
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan | |
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan | |
关键词: Queer Lie superalgebra; Irreducible character; BGG category; Maximal parabolic subcategory; Quantum group; Canonical basis; Dual canonical basis; Brundan-Kazhdan-Lusztig conjecture; Kac-Wakimoto character formula; Sergeev-Pragacz character formula; | |
DOI : 10.1016/j.jalgebra.2016.10.017 | |
来源: Elsevier | |
【 摘 要 】
We establish a maximal parabolic version of the Kazhdan-Lusztig conjecture [10, Conjecture 5.10] for the BGG category O-k,zeta of q(n)-modules of+/-zeta-weights, where k <= n and zeta is an element of C \ 1/2Z. As a consequence, the irreducible characters of these q(n)-modules in this maximal parabolic category are given by the Kazhdan-Lusztig polynomials of type A Lie algebras. As an application, closed character formulas for a class of q(n)-modules resembling polynomial and Kostant modules of the general linear Lie superalgebras are obtained. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2016_10_017.pdf | 571KB | download |