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1. Introduction

Characters for certain classes of finite-dimensional irreducible modules over the queer 
Lie superalgebra q(n) were obtained in the classical works [28,32]. The character problem 
of an arbitrary finite-dimensional irreducible q(n)-module was then first solved by Penkov 
and Serganova [29,30]. They provided an algorithm for computing the coefficient aλμ of 
the character of the irreducible q(n)-module L(μ) in the expansion of the character of 
the associated Euler characteristic E(λ) for given dominant weights λ, μ.

In [2] Brundan developed a rather different approach to computing the coefficient 
aλμ for integer dominant weights λ, μ. Let Fn be the nth exterior power of the natural 
representation of the type B quantum group of infinite rank (cf. [21]). It was proved 
that the transition matrix (aλμ), for λ and μ dominant integer weights, is given by 
the transpose of the transition matrix between canonical and the natural monomial 
bases of Fn at q = 1. This gives all irreducible characters of finite-dimensional integer 
weight modules in terms of a combinatorial algorithm for computing the canonical basis 
of Fn. A new interpretation of the irreducible characters of finite-dimensional half-integer 
weight modules in the same spirit of Lusztig canonical basis of quantum groups was given 
in [8] and [10] as well.

While finite-dimensional representations of the queer Lie superalgebra q(n) are now 
fairly well understood, their infinite-dimensional analogues have not been studied much in 
the literature. Except for n = 2 and some special cases, e.g. [16,6], irreducible characters 
of infinite-dimensional modules in the BGG category remain largely unknown (see, e.g., 
the survey article [18]).

The Brundan–Kazhdan–Lusztig conjecture [1, Conjecture 4.32] for the BGG category 
of integer weight gl(m|n)-modules was proved by Lam, Wang and the second author 
in [12] (see also [4]). In fact, in [12,4] irreducible character problem for arbitrary Borel 
subalgebras was settled; see also [11] for algorithms. Furthermore, in [13], by means of 
twisting functors and parabolic induction functors, Mazorchuk, Wang and the second 
author reduced the irreducible character problem for gl(m|n) of an arbitrary highest 
weight to that of an integer highest weight, for which the Brundan–Kazhdan–Lusztig 
conjecture is then applicable. This gives a complete solution of the irreducible character 
problem for the full BGG category.

A similar reduction is established for q(n) by the first author in [6]. As a consequence, 
the problem of computing the characters of the irreducible modules of arbitrary weights 
in the BGG category On for q(n) is reduced to the irreducible character problem in the 
following three categories: (i) the BGG category On,Z of q(n)-modules of integer weights, 
see, e.g., [2]; (ii) the BGG category On, 12+Z of q(n)-modules of half-integer weights, see, 
e.g., [8,10]; (iii) (ζ /∈ Z/2 and k ∈ {0, 1, . . . , n}) the BGG category On,ζk of q(n)-modules 
of “±ζ-weights”, see, [10] or Section 3.4. In the main body of the present paper, we shall 
use the notation Ok,ζ to denote the category On,ζk , as n will be fixed throughout.

Kwon, Wang and the second author formulated a Kazhdan–Lusztig type conjecture for 
the BGG category in (iii) [10, Conjecture 5.10] above, analogous to Brundan’s conjecture 
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for the category (i) in [2, Section 4.8]. In the same paper, the authors also establish some 
connections between the canonical bases of types A, B, C. Their investigation seems to 
indicate connections between certain modules over q(n) and modules over the general 
linear Lie superalgebra gl(k|n − k) for various k ≤ n.

In particular, for each k ≤ n, one has a bijection between the highest weights of the 
irreducible objects in the category On,ζk and those of the BGG category of integer-weight 
modules for gl(k|n − k), that is compatible with the linkage in both categories (see, e.g., 
[6]). In fact, in [6] it was proved that blocks of atypicality degree one of a certain maximal 
parabolic subcategory Fk,ζ of On,ζk are equivalent to blocks of atypicality degree one of 
the category of finite-dimensional modules over gl(k|n − k).

In the present paper, we study the Kazhdan–Lusztig conjecture for the BGG category 
On,ζk , formulated in [10, Conjecture 5.10], which states that the irreducible characters 
for modules in On,ζk are determined by the very same Brundan–Kazhdan–Lusztig poly-
nomials as those for the BGG category of the general linear Lie superalgebra gl(k|n −k)
of [1]. The main result of the present paper is to (formulate and) prove a parabolic ver-
sion of that conjecture for the maximal parabolic subcategory Fk,ζ (see Section 5). We 
wish to point out that the irreducible q(n)-modules in Fk,ζ are almost always infinite-
dimensional and the character formulas we have obtained in this paper are new.

The paper is organized as follows. In Section 2, we recall the quantum group of type A 
and the construction of the Fock space Em|n. We review the canonical and the dual 
canonical bases in (a topological completion of) Em|n, along with Brundan’s algorithm 
for computing canonical basis. Section 3 is devoted to the study of representations of the 
queer Lie superalgebra q(n). Certain parabolic subcategories of Ok,ζ of q(n)-modules are 
introduced and characterized. In Section 4 we study in detail the tilting modules in these 
parabolic subcategories Ok,ζ . The parabolic version of the Kazhdan–Lusztig conjecture 
for the maximal parabolic subcategory Fk,ζ is then formulated precisely in Section 5. 
We establish a “queer” version of Serganova’s fundamental lemma [31, Theorem 5.5] in 
Section 6. This lemma is then used to prove the Kazhdan–Lusztig conjecture for Fk,ζ in 
Section 7. Our proof here follows the idea of and is inspired by the proof of the main 
theorem in [1]. Finally, we establish a closed Kac–Wakimoto type character formula 
for a class of q(n)-modules in Fk,ζ resembling “Kostant modules” for the general linear 
Lie superalgebra. For those q(n)-modules resembling polynomial representations of the 
general linear Lie superalgebra we obtain a Sergeev–Pragacz type character formula as 
well. This is accomplished in Section 8.

1.1. Notation

We use N, Z and Z≥0 to denote the sets of natural numbers, integers, and non-negative 
integers, respectively. Here and below we let m, n ∈ Z≥0 and set

I(m|n) := {−m,−m + 1, . . . ,−1} ∪ {1, 2, . . . , n}.

Let Zm|n be the set of all functions f : I(m|n) → Z.
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For p ∈ N, the symmetric group on p letters is denoted by Sp. Let Sm|n := Sm×Sn. 
Note that Sm|n acts on the right of Zm|n by composition of functions.

Throughout the paper, we fix a complex number ζ /∈ 1
2Z which will be used from 

Section 3.2 on.

2. Quantum groups and combinatorial preliminaries

In this section we recall the quantum group of type A of infinite rank. We refer to [1, 
Section 2-c] or [12, Section 2] for more details.

2.1. Quantum group of type A

Let U := Uq(gl∞) be the quantum group of type A of infinite rank. This is the 
Q(q)-algebra generated by {Ea, Fa, Ka, K−1

a }a∈Z, subject to the relations

KaK
−1
a = K−1

a Ka = 1, KaKb = KbKa,

KaEbK
−1
a = qδa,b−δa,b+1Eb, KaFbK

−1
a = qδa,b+1−δa,bFb,

EaFb − FbEa = δa,b
Ka,a+1 −Ka+1,a

q − q−1 ,

EaEb = EbEa, if |a− b| > 1,

E2
aEb + EbE

2
a = (q + q−1)EaEbEa, if |a− b| = 1,

FaFb = FbFa, if |a− b| > 1,

F 2
aFb + FbF

2
a = (q + q−1)FaFbFa, if |a− b| = 1.

Here and below Ka,b := KaK
−1
b for a �= b ∈ Z.

U is a Hopf algebra with comultiplication Δ : U → U ⊗ U defined by

Δ(Ea) = 1 ⊗Ea + Ea ⊗Ka+1,a,

Δ(Fa) = Fa ⊗ 1 + Ka,a+1 ⊗ Fa,

Δ(Ka) = Ka ⊗Ka,

for a ∈ Z.

2.2. Fock space Em|n

Let V be the natural U-module with basis {va}a∈Z and let W be its restricted dual 
with basis {wa}a∈Z normalized by 〈wa, vb〉 = (−q)−aδa,b, for a, b ∈ Z. The actions of U
on V and W are respectively given by
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Kavb = qδa,bvb, Eavb = δa+1,bva, Favb = δa,bva+1,

Kawb = q−δa,bwb, Eawb = δa,bwa+1, Fawb = δa+1,bwa.

For m, n ∈ Z≥0, the tensor space Tm|n := V⊗m ⊗ W⊗n can be viewed as a module 
over U via the comultiplication Δ. For f ∈ Zm|n, we let

Mf := vf(−m) ⊗ vf(−m+1) ⊗ · · · ⊗ vf(−1) ⊗ wf(1) ⊗ wf(2) ⊗ wf(n) ∈ Tm|n.

The set {Mf}f∈Zm|n is referred to as the standard monomial basis for Tm|n.
Let Sm be the symmetric group on the letters in I(m|0) with the set of generators 

{si := (i i + 1)| − m ≤ i ≤ −2} ⊆ Sm. Recall that the Iwahori–Hecke algebra Hm

associated to Sm is the associative Q(q)-algebra generated by Hi, −m ≤ i ≤ −2, subject 
to the relations

(Hi − q−1)(Hi + q) = 0,

HiHi+1Hi = Hi+1HiHi+1,

HiHj = HjHi, for |i− j| > 1.

Denote the longest element in Sm by ω(m)
0 . For each σ ∈ Sm, we have the corresponding 

element Hσ := Hi1Hi2 · · ·Hir for any reduced expression σ = si1si2 · · · sir . Recall that 
there is a unique antilinear (q → q−1) automorphism ¯ : Hm → Hm such that Hσ =
H−1

σ−1 , for all σ ∈ Sm (see, e.g., [1, Section 2-e]).
We denote by �am

the classical Bruhat ordering on the weight lattice Zm of gl(m). 
For i ∈ I(m|n), let di ∈ Zm|n be the function j �→ −sgn(i)δij . Recall the super Bruhat 
ordering � on Zm|n for Lie superalgebra gl(m|n) defined in [1, Section 2-b] as follows.

Let P be the free abelian group with basis {εa}a∈Z. Let ≤ denote the partial ordering 
of weights on P , i.e., f ≤ g if and only if f − g ∈

∑
i Z≥0(εi − εi+1). Let wtεr : Zm|n → P

be the ε-weight function defined by

wtεr(f) :=
∑
r≤i

−sgn(i)εf(i), for f ∈ Zm|n, r ∈ I(m|n). (2.1)

The super Bruhat ordering � on Zm|n is defined by f � g, if wtεrf ≤ wtεrg, for all 
r ∈ I(m|n), and wtε−mf = wtε−mg [1, Section 2-b].

For f ∈ Zm|n, the degree of atypicality of f is denoted by �f (see, e.g., [1, (2.3)]). We 
say f is typical if �f = 0; otherwise f is atypical. For f, g ∈ Zm|n, we have that f 
 g

implies �f = �g.
Recall that Tm|0 = V⊗m admits a U-Hm-bimodule structure [20]. Namely, on Tm|0

the Hecke algebra Hm acts as follows:

MfHi =

⎧⎪⎨⎪⎩
Mfsi , if f ≺am

fsi,

q−1Mf , if f = fsi,

Mfsi − (q − q−1)Mf , if f �am
fsi,

(2.2)
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for all −m ≤ i ≤ −2 and f ∈ Zm|0. Similarly, we can define a U-Hn-bimodule structure 
on T0|n = W⊗n.

For p ∈ N, let

H0(p) :=
∑
σ∈Sp

(−q)�(σ)−�(ω(p)
0 )Hσ.

Then H0(p) is a bar-invariant element in Hp (see, e.g., [1, Lemma 3.2]).
It is proved in [22, Propositions 1.1 and 1.2] that Tm|0 = KerH0(m)|Tm|0 ⊕

Tm|0H0(m)|Tm|0 and KerH0(m)|Tm|0 =
∑−2

i=−m Ker(Hi − q−1)|Tm|0 . Similarly, T0|n and 
KerH0(n)|T0|n have analogous decompositions.

As a conclusion, Tm|n admits a U-(Hm ⊗Hn) bimodule structure (see, e.g., [1, Sec-
tion 2-e]) with Tm|n = KerH0 ⊕ Tm|nH0 and KerH0 =

∑
i Ker(Hi − q−1), where the 

summation is over i ∈ I(m|n) \ {−1, n} and H0 := H0(m)H0(n) ∈ Hm ⊗Hn. We define 
the Fock space Em|n := Tm|nH0.

We can identify Em|n with the q-wedge space ∧mV ⊗∧nW (see, e.g., [12, Section 2.4]). 
Let

Z
m|n
+ := {f ∈ Zm|n|f(−m) > f(−m + 1) > · · · > f(−1), f(1) < f(2) < · · · < f(n)}.

From (2.2), it follows that {MfH0}f∈Z
m|n
+

forms a Q(q)-basis for Em|n and the following 

bijection from Em|n to ∧mV ⊗ ∧nW

MfH0 �→ vf(−m) ∧ . . . ∧ vf(−1) ⊗ wf(1) ∧ wf(2) ∧ . . . ∧ wf(n), for f ∈ Zm|n,

gives an isomorphism of U-modules. For each f ∈ Z
m|n
+ , we define Kf := MfH0 ∈ Em|n. 

We call {Kf}
Z
m|n
+

the standard monomial basis for Em|n.

2.3. Canonical and dual canonical bases of Em|n

We let T̂m|n and Êm|n denote certain topological completions of Tm|n and Em|n, 
respectively, see [1, Section 2-d] for precise definition. According to [1, Theorem 2.14]
T̂m|n admits a continuous, anti-linear bar-involution ̄ : T̂m|n → T̂m|n such that XuH =
XuH, for all X ∈ U, u ∈ T̂m|n, H ∈ Hm⊗Hn, and furthermore Mf = Mf , for f ∈ Zm|n

with f(−m) ≤ · · · ≤ f(−1), f(1) ≥ · · · ≥ f(n), f(i) �= f(j), for all −m ≤ i < 0 < j ≤ n.

Theorem 2.1. ([1, Theorem 3.6]) There exist unique bar-invariant topological bases 
{Uf}f∈Z

m|n
+

, {Lf}f∈Z
m|n
+

for Êm|n such that

Uf = Kf +
∑
g≺f

ug,f (q)Kg, Lf = Kf +
∑
g≺f

	g,f (q)Kg,

where summation is over g ∈ Z
m|n
+ , ug,f (q) ∈ qZ[q], and 	g,f (q) ∈ q−1Z[q−1].
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The topological bases {Uf}f∈Z
m|n
+

and {Lf}f∈Z
m|n
+

are respectively referred to as 

canonical basis and dual canonical basis of Êm|n (see, e.g., [1, Section 3-b]). The polyno-
mials ug,f (q), 	g,f (q) can be computed combinatorially [1, Corollary 3.39].

2.4. Procedure for canonical basis

We conclude this section with a review of [1, Procedure 3.20] for constructing canonical 
basis elements Uf , which indeed lie in Em|n. This will be used for construction of certain 
tilting modules of q(n) in Section 4.

Procedure 2.2. ([1, Procedure 3.20]) Assume that f ∈ Z
m|n
+ with �f > 0. Define h ∈ Z

m|n
+ , 

a ∈ Z and X̂a, Ŷa ∈ {Ea, Fa}, by the following instructions below starting with step (I).

Step (I) Let −m ≤ i ≤ −1 be the largest number such that f(i) = f(j) for some 
1 ≤ j ≤ n. Go to step (II).

Step (II) If i �= −1 and f(i) − 1 = f(i + 1), replace i by i + 1 and repeat step (II). 
Otherwise, go to step (III).

Step (III) If f(i) − 1 = f(j) for some 1 ≤ j ≤ n, go to step (II*). Otherwise, set 
X̂a := Ff(i)−1, Ŷa := Ef(i)−1 and h := f − di.

Step (II*) If j �= 1 and f(j) − 1 = f(j − 1), replace j by j − 1 and repeat step (II*). 
Otherwise, go to step (III*).

Step (III*) If f(j) − 1 = f(i) for some −m ≤ i ≤ −1, go to step (II). Otherwise, set 
X̂a := Ef(j)−1, Ŷa := Ff(j)−1 and h := f + dj .

After finitely many steps, the procedure reduces f to a typical g ∈ Z
m|n
+ , namely, 

Uf = X̂b1X̂b2 · · · X̂b�Ug for some b1, b2, . . . , b� ∈ Z depending on g. Since Ug = Kg, we 
have the following lemma (cf. [1, Lemma 3.19, 3.21]).

Lemma 2.3. Let f , h, a ∈ Z, X̂a and Ŷa be given as above. If �f = �h then X̂aUh = Uf , 
ŶaX̂aUh = Uh and X̂aKh = Kf . If �f = �h + 1 then we have X̂aUh = Uf , ŶaX̂aUh =
(q + q−1)Uh and X̂aKh = Kf + qKf−di+dj

, for some −m ≤ i < 0 < j ≤ n, f(i) = f(j)
such that f − di + dj ∈ Z

m|n
+ .

3. Representations of the Lie superalgebra q(n)

3.1. Queer Lie superalgebra

Let Cm|n be the complex superspace of dimension (m|n). The general linear Lie 
superalgebra gl(m|n) may be realized as (m + n) × (m + n) complex matrices:(

A B

C D

)
, (3.1)
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where A, B, C and D are respectively m ×m, m ×n, n ×m, n ×n matrices. Let Ea,b be 
the elementary matrix in gl(m|n) with (a, b)-entry 1 and other entries 0, for a, b ∈ I(m|n)
and let h′ = h′m|n be the standard Cartan subalgebra of gl(m|n) spanned by the basis 
elements {Eaa} and dual basis elements {δ′a}, for a ∈ I(m|n). Denote by Φ′+ the set of 
positive roots in the standard Borel subalgebra.

For m = n, the subspace

g := q(n) =
{(

A B

B A

)∣∣∣∣∣ A,B : n× n matrices
}

(3.2)

forms a subalgebra of gl(n|n) called the queer Lie superalgebra.
The set {eij , ̄eij |1 ≤ i, j ≤ n} is a linear basis for g, where eij = E−n−1+i,−n−1+j+Ei,j

and ēij = E−n−1+i,j + Ei,−n−1+j . Note that the even subalgebra g0̄ is spanned by 
{eij |1 ≤ i, j ≤ n}, which is isomorphic to the general linear Lie algebra gl(n).

Let h = h0̄ ⊕ h1̄ be the standard Cartan subalgebra of g, with linear bases {hi :=
eii|1 ≤ i ≤ n} and {h̄i := ēii|1 ≤ i ≤ n} of h0̄ and h1̄, respectively. Let {δi|1 ≤ i ≤ n} be 
the basis of h∗0̄ dual to {hi|1 ≤ i ≤ n}. We define a symmetric bilinear form (, ) on h∗0̄ by 
(δi, δj) = δij , for 1 ≤ i, j ≤ n.

We denote by Φ, Φ0̄, Φ1̄ the sets of all roots, even roots and odd roots of g, respectively. 
Let Φ+ = Φ+

0̄ � Φ+
1̄ be the set of positive roots in its standard Borel subalgebra b =

b0̄ ⊕ b1̄, which consists of matrices of the form (3.2) with A and B upper triangular. 
Ignoring parity we have Φ0̄ = Φ1̄ = {δi − δj |1 ≤ i, j ≤ n} and Φ+ = {δi − δj |1 ≤ i <
j ≤ n}. We denote by ≤ the usual partial order on the weights h∗0̄ defined by using Φ+. 
The Weyl group W of g is defined to be the Weyl group of the reductive Lie algebra g0̄
and hence acts naturally on h∗0̄ by permutation. For a given root α = δi − δj ∈ Φ, let 
ᾱ := δi + δj .

In the this paper, g-modules are always supposed to have compatible Z2-gradations 
with g-actions, and g-homomorphisms are not necessarily even. For a g-module M and 
μ ∈ h∗0̄, let Mμ := {m ∈ M |h · m = μ(h)m, for h ∈ h0̄} denote its μ-weight space. If 
M has a weight space decomposition M = ⊕μ∈h∗

0̄
Mμ, its character is given as usual by 

chM =
∑

μ∈h∗
0̄
dimMμe

μ, where e is an indeterminate. In particular, we have the root 
space decomposition g = h ⊕ (⊕α∈Φgα) with respect to the adjoint representation of g.

Let λ =
∑n

i=1 λiδi ∈ h∗0̄, and consider the symmetric bilinear form on h∗1̄ defined by 
〈·, ·〉λ := λ([·, ·]). Let 	(λ) be the number of i’s with λi �= 0. Let 1 ≤ i1 < i2 < · · · <
i�(λ) ≤ n such that λi1 , λi2 , . . . , λi�(λ) are non-zero. Denote by �·� the ceiling function. 
Let h′1̄ be a maximal isotropic subspace of h1̄ associated to 〈·, ·〉λ. Put h′ = h0̄ ⊕ h′1̄. Let 
Cvλ be the one-dimensional h′-module with h · vλ = λ(h)vλ and h′ · vλ = 0 for h ∈ h0̄, 
h′ ∈ h′1̄. Then Iλ := Indh

h′Cvλ is an irreducible h-module of dimension 2
�(λ)/2� (see, e.g., 
[15, Section 1.5.4]). We let Δ(λ) := Indg

b
Iλ be the Verma module, where Iλ is extended 

to a b-module in a trivial way, and define L(λ) to be the unique irreducible quotient 
of Δ(λ). Note that Δ(λ) and L(λ) are unique up to g-isomorphisms.
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For a weight λ ∈ h∗0̄, we let �λ to be the atypicality degree of λ (see, e.g., [15, Defini-
tion 2.49]). We say λ is typical if �λ = 0; otherwise λ is called atypical.

3.2. Λk,ζ-weights, Z-gradations, and categories HCk,ζ(lr,l)

Let k, n ∈ Z≥0 with k ≤ n and ζ ∈ C\Z

2 . We let

Λk,ζ := {λ =
n∑

r=1
λiδi ∈ h∗0̄|λi ∈ ζ + Z and λj ∈ −ζ + Z, 1 ≤ i ≤ k < j ≤ n}.

Let s, t ∈ N be such that k = r1 + r2 + . . . + rs and n − k = l1 + l2 + . . . + lt, 
where ri, lj ∈ N. Let r = (r1, . . . , rs) and l = (l1, . . . , lt), and put rc =

∑c
i=1 ri, and 

ld = k +
∑d

i=1 li, for c = 0, . . . , s and d = 0, . . . , t. We define (c �= s and d �= t)

Λr,l
k,ζ := {λ ∈ Λ|λi − λi+1 ∈ N, for rc < i < rc+1 or ld < i < ld+1}.

In the case r = (1, 1, . . . , 1)︸ ︷︷ ︸
k

and l = (1, 1, . . . , 1)︸ ︷︷ ︸
n−k

we have Λ(1,...,1),(1,...,1) = Λk,ζ . In 

the case r = (k) and l = (n − k) we shall use the notation Λ+
k,ζ for Λ(k),(n−k)

k,ζ , i.e.,

Λ+
k,ζ := {λ ∈ Λk,ζ |λi − λi+1 ∈ N, for 0 < i < k or k < i < n}.

Associated to Λr,l
k,ζ we have a Levi subalgebra

lr,l =
s⊕

i=1
q(ri) ⊕

t⊕
j=1

q(li) ⊆ q(n),

with corresponding parabolic subalgebra pr,l, nilradical ur,l, and opposite nilradical 
ur,l,−. Denote the roots in ur,l by Φ+(ur,l). If Π denotes the set of simple roots of even 
positive roots Φ0̄, we let Πr,l ⊆ Π denote the subset such that the even and odd root 
spaces gα ⊆ lr,l if and only if α ∈ Πr,l. Associated to Λr,l

k,ζ we thus have a Z-gradation 
of g =

⊕
j∈Z

gj uniquely determined by

deg h = 0, deg g±α = 0, deg g±β = ±1, for α ∈ Πr,l, β ∈ Π \ Πr,l. (3.3)

Note that this grading is also given by the formula

[D,X] = jX, for X ∈ gj , j ∈ Z, (3.4)

where D is grading operator 
∑s−1

c=0(n −c) 
∑rc+1

p=rc+1 epp+
∑t−1

d=0(n −s −d) 
∑ld+1

q=ld+1 eqq ∈ h0̄. 
Of course we have g0 = lr,l.

Let W r,l denote the Weyl group of lr,l, so that we have W r,l ∼= Sr1 × · · · × Srs ×
Sl1 × · · · ×Slt . Let wr,l

0 be the longest element in W r,l so that, for λ ∈ Λr,l
k,ζ , we have 



10 C.-W. Chen, S.-J. Cheng / Journal of Algebra 473 (2017) 1–28
−wr,l
0 λ ∈ Λr,l

k,−ζ . In the case r = (1, 1, . . . , 1)︸ ︷︷ ︸
k

and l = (1, 1, . . . , 1)︸ ︷︷ ︸
n−k

we shall write w0 for 

wr,l
0 , while in the case r = (k) and l = (n − k) we shall write w+

0 for wr,l
0 .

For given Levi subalgebra s of g containing h, denote by HCk,ζ(s) the category of 
s-modules that are direct sums of finite-dimensional simple s0̄-modules with highest 
weights in Λr,l

k,ζ .
Let br,l be the standard Borel subalgebra of lr,l, namely, br,l is generated by 

h ⊕ (⊕α∈Πr,lgα). For given λ ∈ Λr,l
k,ζ , denote by Δ0(λ) := Indl

r,l

br,lIλ the lr,l-Verma 
module of highest weight λ. Let L0(λ) be its unique irreducible quotient with highest 
weight λ. Note that L0(λ) is a typical lr,l-module and is furthermore finite dimen-
sional.

Lemma 3.1. HCk,ζ(lr,l) is a semisimple category with irreducible objects {L0(λ)|λ ∈
Λr,l
k,ζ}.

Proof. It is enough to show that the full subcategory of HCk,ζ(lr,l) consisting of 
objects with composition factors lying in {L0(λ)|λ ∈ Λr,l

k,ζ} is a semisimple cate-
gory.

Observe that L0(λ) and L0(μ) have different central characters for λ, μ ∈ Λr,l
k,ζ with 

λ �= μ (see, e.g., [15, Theorem 2.48]), and so there are no nontrivial extensions between 
these two irreducibles. Therefore, it suffices to show that L0(λ) has no self-extension 
in HCk,ζ(lr,l), for every λ ∈ Λr,l

k,ζ . Suppose we have a short exact sequence of the 
form

0 → L0(λ) → E
f−→ L0(λ) → 0, (3.5)

in HCk,ζ(lr,l). Since HCk,ζ(h) is a semisimple category (see, e.g., [17, Lemma 1]), (3.5) im-
plies that as h-modules we have Eλ = Iλ ⊕ Iλ. To distinguish these two copies let us 
write Eλ = I

(1)
λ ⊕ I

(2)
λ , where we let I(1)

λ be highest weight space of the submodule L0(λ)
in (3.5). Now consider the submodule W = U(lr,l)I(2)

λ ⊆ E. Since U(lr,l)I(1)
λ = L0(λ) is 

irreducible and Wλ = I
(2)
λ , we have U(lr,l)I(2)

λ ∩U(lr,l)I(1)
λ = 0 and hence E = W⊕L0(λ). 

It follows that W ∼= L0(λ), and so (3.5) is split. �
3.3. Characters of irreducible lr,l-modules of Λr,l

k,ζ-highest weights

For 1 ≤ c ≤ s and 1 ≤ d ≤ t, let

(c)λ = (λrc−1+1, . . . , λrc) and λ(d) = (λld−1+1, . . . , λld),

regarded as weights in the even parts of the Cartan subalgebras of the corresponding 
queer Lie superalgebras q(rc) and q(ld), respectively. Then we have by Penkov’s finite-
dimensional typical character formula [28, Theorem 2]
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chL(q(rc), (c)λ) = 2
rc/2�
∏

rc−1+1≤i<j≤rc

(1 + e−δi+δj )
(1 − e−δi+δj )

∑
w∈Src

(−1)�(w)w(e
(c)λ),

chL(q(ld), λ(d)) = 2
ld/2�
∏

ld−1+1≤s<t≤ld

(1 + e−δs+δt)
(1 − e−δs+δt)

∑
σ∈Sld

(−1)�(σ)σ(eλ
(d)

).

Therefore we obtain the following character formulas.

Proposition 3.2. (cf. [15, Section 3.1.3])

chL0(λ) = 2
n/2�
s∏

c=1

∏
rc−1+1≤i<j≤rc

(1 + e−δi+δj )
(1 − e−δi+δj )

∑
w∈Src

(−1)�(w)w(e
(c)λ)

t∏
d=1

∏
ld−1+1≤s<t≤ld

(1 + e−δs+δt)
(1 − e−δs+δt)

∑
σ∈Sld

(−1)�(σ)σ(eλ
(d)

).

Recall the Levi subalgebra lr,l with corresponding parabolic subalgebra pr,l, nilradi-
cals ur,l, and opposite nilradical ur,l,−. Observe that as an lr,l-module, we have

ur,l,− ∼=
⊕

1≤i<j≤s

1
2

[
Cri|ri∗ ⊗ Crj |rj

]
⊕
⊕
i,j

1
2

[
Cri|ri∗ ⊗ Clj |lj

]
⊕

⊕
1≤i<j≤t

1
2

[
Cli|li∗ ⊗ Clj |lj

]
.

Above the factor 1
2 is explained as follows: For given p, q ∈ N, both Cp|p∗ and Cq|q are 

so-called type Q supermodules, and it is known that their tensor product is isomorphic 
to a direct sum of two copies of the same irreducible q(p) ⊕ q(q)-module. The factor 1

2
means that we take one copy of it, see, e.g., [15, Section 3.1.3].

3.4. Parabolic BGG categories

Let On denote the BGG category of finitely generated q(n)-modules which are locally 
finite over b and semisimple over h0̄. In On, we allow arbitrary (not necessarily even) 
g-morphisms. It is well-known that {L(λ)|λ ∈ h∗0̄} is a complete set of irreducible objects 
in On, up to isomorphism. Let Or,l

k,ζ denote the full subcategory of On consisting of objects 
whose composition factors lie in {L(λ)|λ ∈ Λr,l

k,ζ}. We shall use the following notations 
for the two extreme cases:

Ok,ζ := O
(1,...,1),(1,...,1)
k,ζ , Fk,ζ := O

(k),(n−k)
k,ζ .

Recall that L0(λ) denotes the finite-dimensional irreducible lr,l-module of highest 
weight λ in Section 3.3. Note L0(λ) can be extended to a pr,l-module by letting ur,l act 
trivially. Denote the corresponding parabolic Verma module by
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Δr,l(λ) = Indg

pr,lL
0(λ).

The following proposition is a characterization of the category Or,l
k,ζ .

Proposition 3.3. Or,l
k,ζ is the full subcategory of On of pr,l-locally finite, completely re-

ducible lr,l-modules of Λr,l
k,ζ-highest weights.

Proof. Let λ ∈ Λr,l
k,ζ . Note that Δr,l(λ) ∼= S (ur,l,−) ⊗ L0(λ) as an lr,l-module, where 

S (ur,l,−) denotes the supersymmetric tensor of ur,l,−. Since all the weights in S (ur,l,−)
are integer weight, we see that all the lr,l-weights of Δr,l(λ) are lr,l-typical, and 
so Δr,l(λ) is a completely reducible lr,l-module by Lemma 3.1. Therefore Δr,l(λ) is 
pr,l-locally finite and completely reducible over lr,l. Since L(λ) is a quotient of Δr,l(λ), 
it follows that L(λ) is also pr,l-locally finite and completely reducible as a lr,l-module. 
This completes the proof. �

In the case r = (1, 1, . . . , 1)︸ ︷︷ ︸
k

and l = (1, 1, . . . , 1)︸ ︷︷ ︸
n−k

we shall write Δ(λ) for Δr,l(λ), 

which is consistent with earlier notation, while in the case r = (k) and l = (n − k) we 
shall write K(λ) for Δr,l(λ).

Remark 3.4. The q(n)-module L(λ), for λ ∈ Λr,l
k,ζ , is almost always infinite dimensional. 

Indeed, it follows from [28, Theorem 4] (see also [15, Theorem 2.18]) that L(λ) is finite 
dimensional if and only if λ ∈ Λ+

k,ζ and k ∈ {0, n}.

Remark 3.5. Basic features of parabolic subcategory for semisimple Lie algebras are 
well-known, see e.g., [19, Chapter 9]. In the case of Lie superalgebras, we refer to [26]
in which the parabolic subcategory Õp

r,l corresponding to pr,l is defined to be the full 
subcategory of On,0̄ consisting of pr,l-locally finite, and lr,l0̄ -semisimple q(n)-modules, 
where On,0̄ is the underlying even category of On. Note that the underlying even category 

of Or,l
k,ζ is precisely the full subcategory of Õp

r,l consisting of q(n)-modules of Λk,ζ-weights 
since each weight in Λk,ζ is lr,l-typical.

4. Tilting modules in parabolic categories

Let k, n ∈ Z≥0 with k ≤ n and ζ ∈ C\1
2Z as before. Let us recall that Λ+

k,ζ consists of 
λ satisfying the following conditions

(i) λi ∈ ζ + Z and λj ∈ −ζ + Z, for 1 ≤ i ≤ k < j ≤ n.
(ii) λi − λi+1 ∈ N, for 0 < i < k or k < i < n.

We also recall that Fk,ζ is the full subcategory of the BGG category On consisting of 
objects whose composition factors are isomorphic to L(λ) with λ ∈ Λ+

k,ζ .
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In this section, we study tilting modules and formulate the BGG reciprocity in terms 
of tilting modules by means of the Arkhipov–Soergel duality (see, e.g., [3, Corollary 5.8]).

Let us recall the definition and existence of tilting modules in the parabolic subcate-
gory Õp

r,l provided by [3, Theorem 6.3] (also see [26, Section 4.3]). In particular, for a 
given λ ∈ Λr,l

k,ζ , we denote the tilting module in Or,l
k,ζ corresponding to λ by T r,l(λ). In 

the case r = (1, 1, . . . , 1)︸ ︷︷ ︸
k

and l = (1, 1, . . . , 1)︸ ︷︷ ︸
n−k

(respectively, r = (k) and l = (n − k)), 

i.e., λ ∈ Λk,ζ (respectively, λ ∈ Λ+
k,ζ), we denote the tilting module by T (λ) (respectively, 

U(λ)).
For given m ∈ N, recall that w(m)

0 denotes the longest element in Sm. The following 
lemma is well-known.

Lemma 4.1. Let m ∈ N. If L(λ) is a finite-dimensional q(m)-module then L(λ)∗ ∼=
L(−w

(m)
0 λ).

Proof. Since L(λ) is finite-dimensional, L(λ) is a direct sum of irreducible gl(m)-modules 
with dominant highest weights μ such that λ − μ ∈

∑
α∈Φ+ Z≥0α. Thus, the lowest 

gl(m)-weight in L(λ) is w(m)
0 λ, and hence L(λ)∗ has highest weight −w

(m)
0 λ. �

Recall the supertrace strV (f) of an endomorphism f = f0̄ + f1̄ (f0̄ and f1̄ are re-
spectively even and odd) on a superspace V is defined by strV (f) := trV0̄f0̄ − trV1̄f0̄. 
We consider g =

⊕
j∈Z

gj with the Z-gradation induced from (3.3). Recall that a 
Lie superalgebra homomorphism γ : g0 → C is called a semi-infinite character, if 
γ([X, Y ]) = strg0(ad(X) ◦ ad(Y )), for X ∈ g1, Y ∈ g−1 (cf. [33, Definition 1.1]
and [3, Section 5]). The proof of the following lemma is inspired by the proof of [33, 
Lemma 7.4].

Lemma 4.2. The trivial character 0 : g0 → C is a semi-infinite character for the 
Z-gradation (3.3) for g.

Proof. Let X = X0̄ + X1̄ and Y = Y0̄ + Y1̄ with Xī ∈ (g1)ī, Yī ∈ (g−1)ī for i =
0, 1. We first note that strg0(adX ◦ adY ) = strg0(adX0̄ ◦ adY0̄) + strg0(adX1̄ ◦ adY1̄)
= strg0(adX1̄ ◦ adY1̄), since g0̄ and g1̄ are isomorphic as g0̄-modules. Thus, we may 
assume that X ∈ (g1)1̄, Y ∈ (g−1)1̄.

Next, observe that, for each A ∈ (g0)0̄, we have

strg0(ad[A,X] ◦ adY ) = strg0(adA ◦ adX ◦ adY − adX ◦ adA ◦ adY )
= strg0(adX ◦ adY ◦ adA− adX ◦ adA ◦ adY )
= strg0(adX ◦ ad[Y,A]).

Furthermore, since g1 is a semisimple ad(g0)0̄-module generated by root vectors of simple 
roots, it suffices to show that
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strg0(adXα ◦ adYβ) = 0, (4.1)

for all Xα ∈ gα ∩ (g1)1̄, Yβ ∈ gβ ∩ (g−1)1̄ with α ∈ Π \ Πr,l, β ∈ Φ.
Note that if α + β �= 0 then (adXα ◦ adYβ)(gγ) ⊆ gα+β+γ �= gγ and so (4.1) holds. 

Therefore we may assume that β = −α.
Consider the triangular decomposition g0 = n

+
0 ⊕h ⊕n

−
0 of g0, with n+

0 := ⊕η∈Φ+(g0)η
and n−0 := ⊕η∈Φ\Φ+(g0)η. Let Φ(n+

0 ) and Φ(n−0 ) be the sets of roots of n+
0 and n−0 , 

respectively. Note that n+
0 , h and n−0 are stable under adXα ◦ adY−α. Furthermore,

adXα(n−0 ) ⊂ gα+Φ(n−
0 ) = 0, adY−α(n+

0 ) ⊂ g−α+Φ(n+
0 ) = 0.

Therefore we have

strg0(adXα ◦ adY−α) = strh(adXα ◦ adY−α) + str
n
−
0
(adXα ◦ adY−α)

= trh0̄(adXα ◦ adY−α) − trh1̄(adXα ◦ adY−α) + str
n
−
0
(ad[Xα, Y−α]).

Note that [Xα, Y−α] ∈ h0̄ and so str
n
−
0
(ad[Xα, Y−α]) = 0 since there is a natural isomor-

phism between (n−0 )0̄ and (n−0 )1̄ as h0̄-modules.
Let π : h0̄ → h1̄ be the linear isomorphism defined by π(eii) = eii, for 1 ≤ i ≤ n. Note 

that

adXα ◦ adY−α(h0̄) = α(h0̄)[Xα, Y−α], adXα ◦ adY−α(h1̄) = α(π(h1̄))[Xα, Y−α],

for i ∈ {0̄, ̄1} and hi ∈ hi. It follows that trh0̄(adXα ◦ adY−α) = trh1̄(adXα ◦ adY−α) = 0. 
This completes the proof. �

Lemma 4.2, together with [3, Theorem 6.4] (cf. [33, Theorem 5.12]) and Lemma 4.1, 
implies the following tilting module version of the BGG reciprocity.

Corollary 4.3. For λ, μ ∈ Λr,l
k,ζ , we have

(U(λ) : K(μ)) = [K(−wr,l
0 μ) : L(−wr,l

0 λ)].

5. Formulation of the Kazhdan–Lusztig conjecture in Fk,ζ

Let k, n ∈ Z≥0 with k ≤ n and ζ ∈ C\1
2Z as before. In [10, Conjecture 5.10] a 

Kazhdan–Lusztig type conjecture for Ok,ζ was formulated in terms of canonical basis of 
Tm|n. In this section we formulate a parabolic version of the conjecture for Fk,ζ in terms 
of canonical basis of Ek|n−k.

We identify Λk,ζ with Zk|n−k as follows: For λ ∈ Λk,ζ , we define fλ ∈ Zk|n−k by

fλ(i) =
{

λi+k+1 − ζ, if − k ≤ i ≤ −1,
−(λi+k + ζ), if 1 ≤ i ≤ n− k.

(5.1)
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This gives a bijection between Λk,ζ and Zk|n−k, and furthermore under this bijection 
various definitions correspond to, e.g., �fλ = �λ. Also, for a given μ ∈ Λk,ζ , we let λ � μ

if fλ � fμ. Note that λ � μ implies λ ≤ μ, for all λ, μ ∈ Λk,ζ . Under this bijection the 
set Λ+

k,ζ is sent to Zk|n−k
+ so that we can identify these two sets.

Recall the canonical and dual canonical bases in Section 2.3. For λ, μ ∈ Λ+
k,ζ , we 

define 	λ,μ(q) := 	fλ,gμ(q) and uλ,μ(q) := ufλ,gμ(q), where 	g,f (q) and ug,f (q) are as in 
Theorem 2.1. We have the following parabolic version of [10, Conjecture 5.10] for Fk,ζ , 
whose proof will be given in Section 7.

Theorem 5.1. For λ ∈ Λ+
k,ζ , we have

[U(λ)] =
∑

μ�λ,μ∈Λ+
k,ζ

uμλ(1)[K(μ)],

[L(λ)] =
∑

μ�λ,μ∈Λ+
k,ζ

	μλ(1)[K(μ)].

6. Serganova’s fundamental lemma for Fk,ζ

Let k, n ∈ Z≥0 with k ≤ n and ζ ∈ C\1
2Z as before. In this section we shall prove 

the queer Lie superalgebra version of Serganova’s fundamental lemma [31, Theorem 5.5]. 
Such a “queer” version for the category Fk,ζ is needed for the purpose of adapting 
Brundan’s proof of his finite-dimensional irreducible character formula for the general 
linear Lie superalgebra [1, Theorem 4.37] to our setting of queer Lie superalgebra.

Recall that α := δi + δj , for a given α = δi− δj ∈ Φ+ (Section 3.1). We first recall the 
following lemma of Penkov and Serganova:

Lemma 6.1. [30, Proposition 2.1] Let α ∈ Φ+ and suppose that (λ, α) = 0. Then

Homg(Δ(λ− α),Δ(λ)) �= 0.

The following theorem and its proof are inspired by [31, Theorem 5.5].

Theorem 6.2. Let λ ∈ Λ+
k,ζ . Suppose that α ∈ Φ+ such that (λ, α) = 0 and λ − α ∈ Λ+

k,ζ . 
Then

Homg (K(λ− α),K(λ)) �= 0.

In particular, [K(λ) : L(λ − α)] �= 0.

Proof. In this proof we shall respectively denote pr,l, lr,l and ur,l by p, l and u.
First we have an exact sequence of l-modules

0 −→ I0(λ) −→ Δ0(λ) −→ L0(λ) −→ 0,
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where Δ0(λ) denotes the l-Verma module of highest weight λ (Section 3.2). This exact 
sequence trivially extends to an exact sequence of p-module by letting u act trivially, 
and thus we have an exact sequence of g-modules by parabolic induction

0 −→ Indg
pI

0(λ) −→ Δ(λ) −→ K(λ) −→ 0.

By Lemma 6.1 we have

Homg(Δ(λ− α),Δ(λ)) �= 0,

and thus there exists a non-zero b-singular vector vλ−α ∈ Δ(λ). It suffices to show that 
vλ−α /∈ Indg

pI
0(λ).

Suppose on the contrary that vλ−α ∈ Indg
pI

0(λ). Now vλ−α is of course b0̄-singular. 
We observe that if μ ∈ h∗ is the highest weight of a composition factor in I0(λ), then

μ = w(λ),

for some w ∈ Sk × Sn−k. This is a direct consequence of [16, Theorem 1], according 
to which we have an equivalence of categories between strongly typical blocks of q(k) ⊕
q(n − k)-modules and the corresponding blocks of gl(k) ⊕ gl(n − k)-modules.

Thus, any weight μ of a b0̄-singular vector in Indg
pI

0(λ) is of the form

μ = w(λ) − γ,

where γ is a linear Z≥0-combination of roots in Φ+(u). Thus, we have

μ = λ− η − γ,

where η is a Z≥0-linear combination of positive roots of l. Thus, by assumption we have 
λ − α = λ − η − γ and so

α = η + γ. (6.1)

Now, α is a root in u, and so (6.1) implies that γ ∈ Φ+(u), and there are three possibilities 
for η:

η =

⎧⎪⎪⎨⎪⎪⎩
δi − δs + δt − δj , 1 ≤ i < s ≤ k, k + 1 ≤ t < j ≤ n,

δi − δs, 1 ≤ i < s ≤ k,

δt − δj , k + 1 ≤ t < j ≤ n.

Let us first consider the case η = δi − δs, with 1 ≤ i < s ≤ k. Thus, we have 
w(λ) = λ − δi + δs. Now we have w ∈ Sk ×Sn−k, and also all the λis are distinct, for 
1 ≤ i ≤ k. Thus, we must have
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λi − 1 = λs.

Therefore, we have (λ, η) = λi−λs = 1 and (α, η) = 1, so that we have (λ −α, δi−δs) = 0. 
But then λ − α /∈ Λ+

k,ζ , which is a contradiction.
By a similar argument, the case η = δt − δj with k + 1 ≤ i < s ≤ n leads to a 

contradiction as well.
Finally, we assume that η = δi − δs + δt − δj , for some 1 ≤ i < s ≤ k and k + 1 ≤

t < j ≤ n. In this case, we have γ = δs − δt. Similarly, since each component of λ is
distinct, it follows from w ∈ Sk ×Sn−k that λi − 1 = λs and λt − 1 = λj . Therefore, 
(λ, η) = λi − λs + λt − λj = 2 and (α, η) = 2. Now (λ − α, δi − δs) + (λ − α, δt − δj) =
(λ − α, η) = 0, which also leads to λ − α /∈ Λ+

k,ζ . �
7. Proof of the main theorem

Let k, n ∈ Z≥0 with k ≤ n. Recall that ζ ∈ C\1
2Z is fixed in Section 1.1, and the free 

abelian group P = ⊕a∈ZZεa is defined in Section 2.2. We let F := Fk,ζ in this section.
Let wt : Λ+

k,ζ → P be the weight function defined by (cf. [2, Section 2-c])

wt(λ) :=
k∑

i=1
ελi−ζ −

n∑
i=k+1

ε−(λi+ζ).

It is well-known that χλ = χμ if and only if wt(λ) = wt(μ) (see, e.g., [15, Theorem 2.48]). 
We have decomposition F = ⊕λ∈h∗

0̄
Fχλ

= ⊕γ∈PFγ according to central characters χλ

with wt(λ) = γ.
Let Cn|n and (Cn|n)∗ be the standard representation and its dual, respectively. Denote 

the projection functor from F to Fγ by prγ . We define the translation functors Ea, Fa :
F → F as follows

Ea(M) := prγ+(εa−εa+1)(M ⊗ (Cn|n)∗), Fa(M) := prγ−(εa−εa+1)(M ⊗ Cn|n), (7.1)

for all M ∈ Fγ , γ ∈ P , a ∈ Z. For each a ∈ Z, it is not hard to see that both Ea and 
Fa are exact and bi-adjoint to each other. We write λ →a μ if λ, μ ∈ Λ+

k,ζ and there 
exists 1 ≤ i ≤ k such that λi = μi − 1 = a + ζ or there exists k + 1 ≤ i′ ≤ n such that 
λi′ = μi′ − 1 = −a − 1 − ζ, and in addition, λj = μj for all j �= i in the former case, 
for all j �= i′ in the later case. Let K(F) be the Grothedieck group of F and denote the 
element corresponding to M ∈ F by [M ].

We have the following lemma [6, Lemma 4.2].

Lemma 7.1. Let λ ∈ Λ+
k,ζ . Then both EaK(λ) and FaK(λ) have flags of parabolic Verma 

modules and we have the following formula:

[EaK(λ)] = 2
∑

μ→aλ

[K(μ)], [FaK(λ)] = 2
∑

λ→aμ

[K(μ)].
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We have defined the Z-form Ek|n−k
Z

of Ek|n−k, namely, Ek|n−k
Z

:= Z ⊗Z[q,q−1] E
k|n−k
Z[q,q−1]

by letting q = 1, where Ek|n−k
Z[q,q−1] is the Z[q, q−1]-lattice spanned by {Kf}f∈Z

k|n−k
+

, and 

for given f ∈ Λ+
k,ζ we let Kf (1) := 1 ⊗Kf , Uf (1) := 1 ⊗ Uf ∈ E

k|n−k
Z

.
Let AΔ

k|n−k be the full subcategory of finite-dimensional modules over the general 
linear Lie superalgebra gl(k|n −k) consisting of objects that have a flag of Kac modules, 
see [1, Sections 4-a, b]. Recall that AΔ

k|n−k is also equipped with translation functors (see 

e.g., [1, Section 4-b] and [14, Sections 3.4 and 5.1]). Let FΔ be the full subcategory of F
of all modules which have a flag of K(λ) with λ ∈ Λ+

k,ζ . Let K(FΔ) be the Grothendieck 
group of FΔ. Now Lemma 7.1, together with [1, Corollary 4.26 and Theorem 4.28], 
implies the following proposition that says that the translation functors for FΔ are the 
same as the translation functors on AΔ

k|n−k on the level of Grothendieck groups up to a 
2-factor.

Proposition 7.2. Let j : K(FΔ) → E
k|n−k
Z

be the Z-isomorphism defined by

j([K(λ)]) = Kfλ(1), for λ ∈ Λ+
k,ζ . (7.2)

Then the representation theoretically defined functors Fa and Ea on F decategorify to 
the Chevalley generators 2Fa and 2Ea of Uq(gl∞)|q=1 on Ek|n−k

Z
.

Proposition 7.3. Let λ ∈ Λ+
k,ζ . If λ is typical, then K(λ) = L(λ) = U(λ).

Proof. We have a surjection K(λ) → L(λ) that sends the highest weight space to the 
highest weight space. Now, if K(λ) has a singular vector, then its weight μ lies in Λ+

k,ζ

and furthermore we have identical central character χλ = χμ. Since λ is typical, we must 
have λ = μ. Thus, K(λ) = L(λ) is irreducible.

Note that λ ∈ Λ+
k,ζ is typical if and only if −w+

0 λ ∈ Λ+
k,−ζ is typical. Thus, we have 

K(−w+
0 λ) = L(−w+

0 λ), and hence by Corollary 4.3, we have U(λ) = K(λ). �
Let λ ∈ Λ+

k,ζ and a ∈ Z. It is known that both EaU(λ) and FaU(λ) are direct sums of 
tilting modules (see, e.g., [1, Corollary 4.27]). Furthermore, we have the following lemma 
[6, Lemma 4.3].

Lemma 7.4. Let λ ∈ Λ+
k,ζ . Then the multiplicity of each non-zero tilting module summand 

of EaU(λ) and FaU(λ) is even.

The following lemma follows from Procedure 2.2.

Lemma 7.5. For every f ∈ Z
k|n−k
+ , we have Uf (1) ∈ Kf (1) +

∑
g≺f Z≥0Kg(1).

We have now all the ingredients to adapt Method two of the proof of [1, Theorem 4.37]
to prove that Procedure 2.2 specialized at q = 1 gives the construction of the tilting 
modules in F.
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Theorem 7.6. Let λ ∈ Λ+
k,ζ . Then [U(λ)] is mapped to Ufλ(1) under the isomorphism j

in (7.2).

Proof. We shall proceed by induction on the degree of atypicality �λ of λ. If �λ = 0, then 
K(λ) = L(λ) = U(λ) by Lemma 7.3. Assume that �λ > 0 and furthermore j([U(ν)]) =
Uh(1), where ν ∈ Λ+

k,ζ is given by Procedure 2.2 satisfying h = fν . Let X̂a ∈ {Ea, Fa}a∈Z

be the operators given in Procedure 2.2. Also, the related translation functor is denoted 
by X̂a. For each tilting module U ∈ F we define XaU to be a direct summand of the 
direct sum of two isomorphic copies of X̂aU (see Lemma 7.4).

First note that j([XaU(ν)]) = X̂aUh(1) = Ufλ(1). Therefore, we may conclude that 
U(λ) is a direct summand of XaU(ν) by Lemma 7.5. We shall prove that U(λ) = XaU(ν)
by proving that XaU(ν) is indecomposable.

Suppose XaU(ν) is decomposable. Let XaU(ν) = T1 ⊕ T2 with T1 = U(λ). It follows 
from Lemma 2.3 that

j([YaXaU(ν)]) = ŶaX̂aUh(1) =
{

Uh(1), if �λ = �ν,

2Uh(1), if �λ− 1 = �ν.

Since X̂a, Ŷa are bi-adjoint to each other, as in the proof of [1, Theorem 4.37], we have 
(YaTi : U(ν)) �= 0 for i = 1, 2. This means that j([YaXaU(ν)]) = 2Uh(1). Therefore,

YaXaU(ν) = U(ν) ⊕ U(ν),

and so YaT1 = YaT2 = U(ν). We obtain [YaU(λ) : L(ν)] = 1. We will show that 
[YaU(λ) : L(ν)] ≥ 2 and so get a contradiction.

By Lemma 2.3 again, there is μ = λ − α ∈ Λ+
k,ζ with α ∈ Φ+(u), (λ, α) = 0 such that 

X̂aKh(1) = Kf (1) + Kfμ(1). By Corollary 4.3 we have

(U(λ) : K(μ)) = [K(−w+
0 μ) : L(−w+

0 λ)] = [K(−w+
0 λ + w+

0 α) : L(−w+
0 λ)].

Note that

(−w+
0 λ + w+

0 α,w
+
0 α) = −(w+

0 λ,w
+
0 α) = −(λ, α) = 0.

Consequently, by Theorem 6.2 we have [K(−w+
0 λ + w+

0 α) : L(−w+
0 λ)] ≥ 1 and hence 

(U(λ) : K(μ)) ≥ 1.
Since (U(λ) : K(λ)) = 1 and [K(λ) : L(μ)] ≥ 1 by Theorem 6.2, we conclude that

[U(λ) : L(μ)] ≥ 2. (7.3)

Furthermore, since XaK(ν) has a filtration with K(μ) on the top, by the adjunction 
between X̂a, Ŷa again we have

Homg

(
K(ν), ŶaL(μ)

)
= Homg

(
X̂aK(ν), L(μ)

)
�= 0,
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which implies that [YaL(μ) : L(ν)] ≥ 1. Finally, combining this with (7.3) gives [YaU(λ) :
L(ν)] ≥ 2. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Theorem 7.6 and Corollary 4.3 we have the multiplicity for-
mula uμ,λ(1) = (U(λ) : K(μ)) and u−w+

0 λ,−w+
0 μ(1) = (K(λ) : L(μ)). Namely, we have 

the character formulas

chU(λ) =
∑
μ�λ

uμ,λ(1)chK(μ),

chK(λ) =
∑
μ�λ

u−ω+
0 λ,−ω+

0 μ(1)chL(μ).

Let 1k|n−k :=
∑

1≤i≤k δi −
∑

k+1≤i≤n δi. From [1, Corollary 3.14 and (4.17)], we have 
that the following transition matrix(

u−ω+
0 λ,−ω+

0 μ(1)
)
λ,μ∈Λ+

k,ζ

has inverse matrix(
	μ+(n+1)1k|n−k,λ+(n+1)1k|n−k

(1)
)
λ,μ∈Λ+

k,ζ

= (	μ,λ(1))λ,μ∈Λ+
k,ζ

.

This completes the proof. �
8. Kac–Wakimoto and Sergeev–Pragacz type character formulas

In this section we apply Theorem 5.1 to obtain closed character formulas for analogues 
of Kostant and polynomial modules of q(n). We first recall the notation of h′m|n, δ′a
(a ∈ I(m|n)), and Φ′+ from Section 3.1. Furthermore, given a partition μ = (μ1, μ2, . . .), 
we let μt denote its conjugate partition. Finally, recall that a partition μ is called a 
(k|n − k)-hook partition if μk+1 ≤ n − k.

Let 0 ≤ k ≤ n and let λ ∈ Λk,ζ . Define ρ =
∑k

i=1(k − i + 1 − n+1
2 )δi +

∑n
j=k+1(k −

j + n+1
2 )δj . Define λ′ =

∑n
i=1 λ

′
iδi by

λ′ := λ− ρ− (
k∑

i=1
ζδi −

n∑
j=k+1

ζδj)

=
k∑

i=1
(λi − ζ − k + i− 1 + n + 1

2 )δi +
n∑

j=k+1

(λj + ζ + j − k − n + 1
2 )δj .

Identifying δi with δ′−k−1+i and δj with δ′j−k, for 1 ≤ i ≤ k and k + 1 ≤ j ≤ n, we may 
regard λ′ and ρ as elements in h′∗ and thus as weights for gl(k|n − k). This gives 
k|n−k
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a bijection between the set Λk,ζ and the set of integral weights for gl(k|n − k). In this 
section we shall freely use this identification and thus identify h∗0̄ with h′∗k|n−k.

Recall that the Borel subalgebras of a general linear Lie superalgebra gl(k|n − k)
are in general not conjugate under its Weyl group Sk|n−k = Sk × Sn−k. However, it 
is well-known [24] that any two non-conjugate Borel subalgebras with identical even 
subalgebra can be transformed to each other by a sequence of odd reflections. For a 
Borel subalgebra b′ of gl(k|n − k) let us denote the set of positive and simple roots of b′
by Φ′+

b′ and Π′
b′ , respectively. Recall that the set of positive roots of the standard Borel 

subalgebra is denoted by Φ′+.
Let us denote the highest weight irreducible gl(k|n − k)-module of highest weight ν

with respect to the Borel subalgebra b′ by L′
b′(ν). Let ρb′ denote the signed half sum of 

the positive roots in b′. Above, the notation ρ stands for the Weyl vector with respect 
to the standard Borel.

Recall the notion of a gl(k|n − k)-Kostant module from [5]. In the language of [34] a 
finite-dimensional irreducible gl(k|n − k)-module of highest weight (with respect to the 
standard Borel subalgebra) λ is a Kostant module, if λ is totally connected. By [7] it 
follows that a finite-dimensional irreducible module L′ is a Kostant module if and only 
if there exists a weight ν and a Borel subalgebra b′ with a distinguished subset S ⊆ Π′

b′

consisting of mutually orthogonal roots such that (i) L′ ∼= L′
b′(ν), (ii) �ν = |S|, and 

(iii) S is orthogonal to ν + ρb′ . Furthermore, the character for such a module is given 
by the so-called Kac–Wakimoto character formula which was conjectured in [23] and 
established (in the type A case) in [7]:

chL′
b′(ν) = 1

�ν!

∏
β∈Φ′+

b′,1̄
eβ/2 + e−β/2∏

α∈Φ′+
b′,0̄

eα/2 − e−α/2

∑
w∈Sk|n−k

(−1)�(w)w

(
eν+ρb′∏

γ∈S 1 + e−γ

)
. (8.1)

Lemma 8.1. Let λ ∈ Λ+
k,ζ be such that L′(λ′) is a gl(k|n −k)-Kostant module. Suppose that 

L′(λ′) ∼= L′
b′(λ′

b′) is such that S ⊆ Π′
b′ is a distinguished subset consisting of mutually 

orthogonal roots with �λ′ = |S| and orthogonal to λ′
b′ + ρb′ . Then we have the following 

identity in h∗0̄:

∑
μ�λ

	μλ(1)
∑

w∈Sk|n−k

(−1)�(w)w(eμ
′+ρ) = 1

�λ!
∑

w∈Sk|n−k

(−1)�(w)w

(
eλ

′
b′+ρb′∏

γ∈S 1 + e−γ

)
.

Proof. Let K ′(λ′) denote the Kac module of gl(k|n −k) of highest weight λ′ with respect 
to the standard Borel subalgebra. By [1, Theorem 4.37] we have

chL′(λ′) =
∑
μ�λ

	μλ(1)chK ′(μ′).

Combining this with (8.1) we have the identity:
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∑
μ�λ

	μλ(1)

∏
β∈Φ′+

1̄
eβ/2 + e−β/2∏

α∈Φ′+
0̄

eα/2 − e−α/2

∑
w∈Sk|n−k

(−1)�(w)w(eμ
′+ρ) =

1
�λ′!

∏
β∈Φ′+

b′,1̄
eβ/2 + e−β/2∏

α∈Φ′+
b′,0̄

eα/2 − e−α/2

∑
w∈Sk|n−k

(−1)�(w)w

(
eλ

′
b′+ρb′∏

γ∈S 1 + e−γ

)
.

Since the even subalgebra of b′ and that of the standard Borel subalgebra coincide, we 
have ∏

β∈Φ′+
1̄

eβ/2 + e−β/2∏
α∈Φ′+

0̄
eα/2 − e−α/2 =

∏
β∈Φ′+

b′,1̄
eβ/2 + e−β/2∏

α∈Φ′+
b′,0̄

eα/2 − e−α/2 .

From this the lemma follows. �
Note that corresponding to the Borel subalgebra b′ for gl(k|n −k) we have a Borel sub-

algebra of g = q(n), which is obtained in a similar way as for gl(k|n −k) with the sequence 
of odd reflections replaced by the corresponding sequence of twisting functors [6].

For λ ∈ Λ+
k,ζ we call an irreducible q(n)-module L(λ) a Kostant module, if L′(λ′) is 

a Kostant module of gl(k|n − k). We can now prove the following Kac–Wakimoto type 
character formula for Kostant modules of q(n).

Theorem 8.2. Let λ ∈ Λ+
k,ζ such that L(λ) is a Kostant module. Let b′ be the corre-

sponding Borel subalgebra of gl(k|n − k) with a distinguished set S ⊆ Π′
b′ consisting 

of mutually orthogonal roots and �λ′ = �λ = |S| and orthogonal to λ′
b′ + ρb′ . Let 

λb′ = λ′
b′ + ρb′ + ζ1k|n−k. Then we have

chL(λ) = 2
n/2�

�λ!
∏

α∈Φ+

1 + e−α

1 − e−α

∑
w∈Sk|n−k

(−1)�(w)w

(
eλb′∏

γ∈S 1 + e−γ

)
.

Proof. By Theorem 5.1 we have chL(λ) =
∑

μ�λ 	μλ(1)chK(μ). Thus, we compute

chL(λ) = 2
n/2�
∑
μ�λ

	μλ(1)
∏

β∈Φ(u+)

1 + e−β

1 − e−β

∑
w∈Sk|n−k

(−1)�(w)w (eμ)
∏

β∈Φ+(l)

1 + e−β

1 − e−β

= 2
n/2�
∑
μ�λ

	μλ(1)
∏

β∈Φ+

1 + e−β

1 − e−β

∑
w∈Sk|n−k

(−1)�(w)w (eμ)

= 2
n/2�
∑
μ�λ

	μλ(1)
∏

β∈Φ+

1 + e−β

1 − e−β

∑
w∈Sk|n−k

(−1)�(w)w
(
eμ

′+ρ+ζ1k|n−k

)

= 2
n/2�
∑
μ�λ

	μλ(1)
∏

+

1 + e−β

1 − e−β

∑
w∈S

(−1)�(w)w
(
eμ

′+ρ
)
eζ1k|n−k
β∈Φ k|n−k
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= 2
n/2�

�λ!
∏

β∈Φ+

1 + e−β

1 − e−β

∑
w∈Sk|n−k

(−1)�(w)w

(
eλ

′
b′+ρb′∏

γ∈S 1 + e−γ

)
eζ1k|n−k ,

where in the last identity we have used Lemma 8.1. The theorem now follows. �
Example 8.3. Consider q(4) and λ = (ζ + 2)δ1 + (ζ + 1)δ2 + (−ζ − 1)δ3 + (−ζ − 2)δ4 so 
that k = 2 and �λ = 2. Furthermore, Φ+ = {δi−δj |1 ≤ i < j ≤ 4} and the integral Weyl 
group here is S2 ×S2, consisting of permutations on the letters {1, 2} and {3, 4}. Then 
λb′ = (ζ +2)δ1 +(ζ +2)δ2 +(−ζ− 2)δ3 +(−ζ− 2)δ4 and S = {δ1 − δ3, δ2 − δ4}. We have

chL(λ) = 2
∏

1≤i<j≤4

1 + e−δi+δj

1 − e−δi+δj

∑
w∈S2×S2

(−1)�(w)w

(
e(ζ+2)12|2

(1 + e−δ1+δ3)(1 + e−δ2+δ4)

)
.

Remark 8.4. Theorem 8.2 suggests that the Kostant modules for q(n) have BGG type 
resolutions in terms of the parabolic Verma modules K(μ) in analogy to the resolution 
of gl(k|n − k)-Kostant modules by Kac modules [9,5].

We recall that every irreducible polynomial module of gl(k|n −k), i.e., every irreducible 
submodule of a tensor power of the standard module Ck|n−k, is a Kostant module. For 
such modules, recall that one has another closed classical character formula, called the 
Sergeev–Pragacz formula (see, e.g., [25, page 60] or [27, §12.2]). Below, we shall derive 
an analogue of this formula for q(n)-Kostant modules that correspond to polynomial 
modules for the general linear Lie superalgebra.

It is well-known that the isomorphism classes of irreducible polynomial modules of the 
Lie superalgebra gl(k|n −k) are in bijection with the so-called (k|n −k)-hook partitions. 
To be more precise, let ν =

∑n
i=1 νiδ

′
i ∈ h′∗k|n−k. A necessary and sufficient condition for 

ν to the highest weight (with respect to the standard Borel subalgebra) of an irreducible 
polynomial representation is that ν− = (ν1, . . . , νk) and ν+ = (νk+1, . . . , νn) are both 
partitions, and in addition (ν−, (ν+)t) is a (k|n − k)-hook partition.

Let L′(ν) be a polynomial module of gl(k|n − k). Then we can visualize the corre-
sponding hook partition diagrammatically as follows:

ν−

(ν+)t
k

n− k
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We can associate to the corresponding hook partition ν three partitions Mν , rν , and 
bν = ν+ as follows:

Mν

rν

btν

k

n− k

Let xi = eδi , i = 1, . . . , k and yj = eδk+j , j = 1, . . . , n − k. We have the following 
Sergeev–Pragacz character formula for L′(ν):

chL′(ν) =
∑

w∈Sk|n−k

w

(
gν(x, y)xrνybν

∏k
i=1 x

k−i
i

∏n−k
j=1 yn−k−j

j

Δ(x)Δ(y)

)
, (8.2)

where gν(x, y) =
∏

(i,j)∈Mν
(xi + yj), Δ(x) =

∏
i<j(xi − xj), and Δ(y) =

∏
p<q(yp − yq). 

Here xrν :=
∏k

i=1 x
(rν)i
i and ybν :=

∏n−k
j=1 y

(bν)j
j . (Also here we have used the identifica-

tion between δis and δ′j as explained above.)
Let Cν be the complement of Mν in the k × (n − k) box, i.e., the Young diagram 

(n− k, n− k, . . . , n− k)︸ ︷︷ ︸
k

.

Lemma 8.5. Let λ ∈ Λ+
k,ζ be such that λ′ is the highest weight of an irreducible polynomial 

module for gl(k|n − k). Then we have the following identity in h∗0̄:

∑
w∈Sk|n−k

(−1)�(w)w

(
xλ′−

yλ
′+∏k

i=1 x
k−i
i

∏n−k
j=1 yn−k−j

j∏
(i,j)∈Cλ′ 1 + x−1

i yj

)
=

∑
μ�λ

	μλ(1)
∑

w∈Sk|n−k

(−1)�(w)w

⎛⎝xμ′−
yμ

′+
k∏

i=1
xk−i
i

n−k∏
j=1

yn−k−j
j

⎞⎠ .

Proof. To simplify notation let us write xρx :=
∏k

i=1 x
k−i
i and yρy :=

∏n−k
j=1 yn−k−j

j . For 
an integer l we write xl :=

∏k
i=1 x

l
i and similarly for yl.

We have by (8.2)

chL′(λ′) =
∑

w∈S

w

(∏
(i,j)∈Mλ′ (xi + yj)xrλ′ ybλ′xρxyρy

Δ(x)Δ(y)

)

k|n−k
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=
∑

w∈Sk|n−k

(−1)�(w) 1
Δ(x)Δ(y)w

(∏
i,j(xi + yj)xrλ′ ybλ′xρxyρy∏

(i,j)∈Cλ′ (xi + yj)

)

=
∑

w∈Sk|n−k

(−1)�(w)
∏

i,j(xi + yj)
Δ(x)Δ(y) w

(
xrλ′ ybλ′xρxyρy∏
(i,j)∈Cλ′ (xi + yj)

)

=
∑

w∈Sk|n−k

(−1)�(w)
∏

i,j(xi + yj)
Δ(x)Δ(y) w

(
xrλ′ ybλ′xρxyρy

xCλ′
∏

(i,j)∈Cλ′ (1 + x−1
i yj)

)

=
∑

w∈Sk|n−k

(−1)�(w)
∏

i,j(xi + yj)
Δ(x)Δ(y) x−n+kw

(
xλ′−

ybλ′xρxyρy∏
(i,j)∈Cλ′ (1 + x−1

i yj)

)
.

Also by [1, Theorem 4.37] we have

chL′(λ′) =
∑
μ�λ

	μλ(1)
∏
i,j

(xi + yj)
x−n+k

Δ(x)Δ(y)
∑

w∈Sk|n−k

(−1)�(w)
(
xμ′−

yμ
′+
xρxyρy

)
.

Comparing these two expressions the lemma follows. �
Theorem 8.6. Let λ ∈ Λ+

k,ζ be such that λ′ is the highest weight of an irreducible polyno-
mial module for gl(k|n − k). Then we have

chL(λ) =
2
n/2�

∏
i<j(xi + xj)

∏
p<q(yp + yq)∏

i,j(xi − yj)
xζ+n+1

2 −ky−ζ−n−1
2 +k

×
∑

w∈Sk|n−k

w

(
gλ′(x, y)xrλ′ ybλ′

∏k
i=1 x

k−i
i

∏n−k
j=1 yn−k−j

j

Δ(x)Δ(y)

)
.

Proof. We define

κ :=
k∑

i=1
(ζ − n− 1

2 )δi +
n∑

j=k+1

(k − n− 1
2 − ζ)δj ,

so that we have λ = λ′ + ρx + ρy + κ. By Theorem 5.1 and Lemma 8.5 we have the 
following expression for chL(λ):

= 2
n/2�
∑
μ�λ

	μλ(1)
∏
i,j

xi + yj
xi − yj

∏
i<j,p<q(xi + xj)(yp + yq)

Δ(x)Δ(y)

× eκ
∑
w

(−1)�(w)w
(
xμ′−

yμ
′+
xρxyρy

)
= 2
n/2�eκ

∏ xi + yj
xi − yj

∏
i<j,p<q(xi + xj)(yp + yq)

Δ(x)Δ(y)

i,j
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×
∑
w

(−1)�(w)w

(
xλ′−

yλ
′+
xρxyρy∏

(i,j)∈Cλ′ 1 + x−1
i yj

)

= 2
n/2�eκ
∏

i<j,p<q(xi + xj)(yp + yq)∏
i,j(xi − yj)

∑
w

w

(∏
i,j(xi + yj)xλ′−

yλ
′+
xρxyρyxCλ′

Δ(x)Δ(y)
∏

(i,j)∈Cλ′ xi + yj

)

= 2
n/2�xn−keκ
∏

i<j,p<q(xi + xj)(yp + yq)∏
i,j(xi − yj)

×
∑

w∈Sk|n−k

w

(∏
(i,j)∈Mλ′ (xi + yj)xrλ′ ybλ′xρxyρy

Δ(x)Δ(y)

)
.

Recalling the definitions of κ and gλ′(x, y) gives the theorem. �
Remark 8.7. Consider the full subcategory of On, 12+Z consisting of objects with compo-
sition factors isomorphic to L(λ) with λ =

∑n
i=1 λiδi ∈ h∗0̄ of the form λi ∈ 1

2Z and 
λk+1 > λk+2 > · · · > λn > 0 > λ1 > λ2 > · · · > λk. According to [10, Proposition 4.1 
and Corollary 4.2] the canonical basis on the corresponding subspace of the Fock space 
of type C can be identified naturally with canonical basis of type A. Now, a verbatim 
repetition of the arguments given above can be used to obtain an irreducible character 
formula for L(λ) in analogy to Theorem 5.1. Here, we use 1

2 for ζ in the expression 
(5.1) to define the corresponding Kazhdan–Lusztig polynomials 	λμ(q). This establishes 
a parabolic version of a special case of the conjecture on the irreducible characters for 
the half-integer weights in [10]. Also, the formula for Kostant modules and analogues of 
polynomial modules in this section have analogues in this setting as well. We leave the 
details to the reader.

We expect that the characters of L(λ) in the case when λ satisfies the more general 
condition of λj > 0 > λi, for i = 1, . . . , k and j = k + 1, . . . , n, and either λl ∈ 1

2Z

or λl ∈ Z, for all l, are determined by canonical basis of type A quantum groups. This 
is predicted by [10] and one should be able to establish this following the approach 
in [4].
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