期刊论文详细信息
JOURNAL OF ALGEBRA 卷:518
Integrality over fixed rings of automorphisms in a Lie nilpotent setting]
Article
Szigeti, Jeno1 
[1] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
关键词: Lie nilpotent algebra;    Fixed ring of automorphisms;    Skew polynomial algebra;   
DOI  :  10.1016/j.jalgebra.2018.10.009
来源: Elsevier
PDF
【 摘 要 】

Let R be a Lie nilpotent algebra of index k >= 1 over a field K of characteristic zero. If G is an n-element subgroup G subset of Aut(K)(R) of K-automorphisms, then we prove that R is right integral over Fix(G) of degree n(k). In the presence of a primitive n-th root of unity delta is an element of K, for a K-automorphism is an element of Aut(K)(R) with delta(n) = id(R), we prove that the skew polynomial algebra R[omega, delta] is right integral of degree nk over Fix(delta) [omega(n)]. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_10_009.pdf 311KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次