期刊论文详细信息
JOURNAL OF ALGEBRA | 卷:518 |
Integrality over fixed rings of automorphisms in a Lie nilpotent setting] | |
Article | |
Szigeti, Jeno1  | |
[1] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary | |
关键词: Lie nilpotent algebra; Fixed ring of automorphisms; Skew polynomial algebra; | |
DOI : 10.1016/j.jalgebra.2018.10.009 | |
来源: Elsevier | |
【 摘 要 】
Let R be a Lie nilpotent algebra of index k >= 1 over a field K of characteristic zero. If G is an n-element subgroup G subset of Aut(K)(R) of K-automorphisms, then we prove that R is right integral over Fix(G) of degree n(k). In the presence of a primitive n-th root of unity delta is an element of K, for a K-automorphism is an element of Aut(K)(R) with delta(n) = id(R), we prove that the skew polynomial algebra R[omega, delta] is right integral of degree nk over Fix(delta) [omega(n)]. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2018_10_009.pdf | 311KB | download |