期刊论文详细信息
JOURNAL OF ALGEBRA 卷:417
Markov complexity of monomial curves
Article
Charalambous, Hara1  Thoma, Apostolos2  Vladoiu, Marius3,4 
[1] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[4] Acad Romana, Simion Stoilow Inst Math, Res Grp, Project ID PCE 2011 3 1023, Bucharest 014700, Romania
关键词: Toric ideals;    Markov basis;    Graver basis;    Lawrence liftings;   
DOI  :  10.1016/j.jalgebra.2014.06.025
来源: Elsevier
PDF
【 摘 要 】

Let A = {a(1),...,a(n)} subset of N-m. We give an algebraic characterization of the universal Markov basis of the toric ideal I-A. We show that the Markov complexity of A = {n(1), n(2), n(3)} is equal to 2 if I-A is complete intersection and equal to 3 otherwise, answering a question posed by Santos and Sturmfels. We prove that for any r >= 2 there is a unique minimal Markov basis of A((r)). Moreover, we prove that for any integer l there exist integers n(1), n(2), n(3) such that the Graver complexity of A is greater than l. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2014_06_025.pdf 453KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次