期刊论文详细信息
JOURNAL OF ALGEBRA 卷:516
Structural decomposition of monomial resolutions
Article
Alesandroni, Guillermo1 
[1] Wake Forest Univ, Dept Math, 1834 Wake Forest Rd, Winston Salem, NC 27109 USA
关键词: Taylor resolution;    Monomial ideal;    Minimal free resolution;    Projective dimension;    Multigraded Betti number;   
DOI  :  10.1016/j.jalgebra.2018.09.003
来源: Elsevier
PDF
【 摘 要 】

We express the multigraded Betti numbers of an arbitrary monomial ideal in terms of the multigraded Betti numbers of two basic classes of ideals. This decomposition has multiple applications. In some concrete cases, we use it to construct minimal resolutions of classes of monomial ideals; in other cases, we use it to compute projective dimensions. To illustrate the effectiveness of the structural decomposition, we give a new proof of a classic theorem by Charalambous that states the following: let k be a field, and M an Artinian monomial ideal in S = k[x(1),...,x(n)]; then, for all i, b(i)(S/M) >= ((n)(i)). (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_09_003.pdf 611KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次