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We express the multigraded Betti numbers of an arbitrary 
monomial ideal in terms of the multigraded Betti numbers of 
two basic classes of ideals. This decomposition has multiple 
applications. In some concrete cases, we use it to construct 
minimal resolutions of classes of monomial ideals; in other 
cases, we use it to compute projective dimensions. To illustrate 
the effectiveness of the structural decomposition, we give a 
new proof of a classic theorem by Charalambous that states 
the following: let k be a field, and M an Artinian monomial 
ideal in S = k[x1, . . . , xn]; then, for all i, bi(S/M) ≥

(
n
i

)
.
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1. Introduction

The problem of finding the minimal resolution of an arbitrary monomial ideal in closed 
form has been deemed utopic by many a mathematician. As a consequence, people 
have tried to restrict the study of minimal resolutions to particular classes of ideals. 
Borel ideals, minimally resolved by the Eliahou–Kervaire resolution [6]; generic ideals, 
minimally resolved by the Scarf complex [2]; and dominant ideals, minimally resolved by 
the Taylor resolution [1], are examples of this restrictive approach.
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In the first half of this paper, however, we turn to the general problem, and decompose 
the minimal resolution of an arbitrary monomial ideal in terms of the minimal resolutions 
of two basic classes that we call dominant, and purely nondominant ideals. More precisely, 
we express the multigraded Betti numbers of an ideal as the sum of the multigraded 
Betti numbers of some dominant and some purely nondominant ideals. Since dominant 
ideals are minimally resolved by their Taylor resolutions, our decomposition reduces the 
study of minimal monomial resolutions to the study of minimal resolutions of purely 
nondominant ideals.

Unfortunately, the resolutions of purely nondominant ideals involve the same chal-
lenges that we encounter in the general context. Some of these difficulties are the existence 
of ghost terms (that is, the minimal resolution contains basis elements of equal multi-
degree in consecutive homological degrees), characteristic dependence, and the striking 
fact that some of the simplest purely nondominant ideals cannot be minimally resolved 
by any subcomplex of the Taylor resolution. Thus, in the second half of this work we 
focus our efforts on one particular case: monomial ideals whose structural decomposition 
has no purely nondominant part. As a result of this study, we obtain the multigraded 
Betti numbers of two families that we call 2-semidominant and almost generic ideals.

The structural decomposition is also a useful tool to compute projective dimensions. 
We prove, for instance, that if an ideal M satisfies certain conditions, pd(S/M) = 2, 
and, under some other conditions, pd(S/M) = n, where n is the number of variables 
in the polynomial ring. Another result, also related to projective dimensions, is a new 
proof of a classic theorem of Charalambous [3] (see also [12, Corollary 21.6]), stating: 
let k be a field, and M an Artinian monomial ideal in S = k[x1, . . . , xn]; then, for all i, 
bi(S/M) ≥

(
n
i

)
. While the original proof relies on the radical of an ideal, ours is based 

on the structural decomposition.
The organization of the article is as follows. Section 2 is about background and nota-

tion. Section 3 is technical; it contains some isomorphism theorems that will be used to 
construct the structural decomposition of section 4. In sections 5 and 6 we compute Betti 
numbers and projective dimensions using the structural decomposition. Section 7 relates 
the structural decomposition to the lcm-lattice, and describes connections to some classes 
of ideals combinatorially defined. Section 8 is the conclusion; it includes some comments, 
questions, and conjectures.

2. Background and notation

Throughout this paper S represents a polynomial ring over an arbitrary field k, in a 
finite number variables. The letter M always denotes a monomial ideal in S. With minor 
modifications, the constructions that we give below can be found in [11,12].

Construction 2.1. Let M be generated by a set of monomials {l1, . . . , lq}. For every 
subset {li1 , . . . , lis} of {l1, . . . , lq}, with 1 ≤ i1 < . . . < is ≤ q, we create a formal symbol 
[li1 , . . . , lis ], called a Taylor symbol. The Taylor symbol associated to {} is denoted by [∅]. 
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For each s = 0, . . . , q, set Fs equal to the free S-module with basis {[li1 , . . . , lis ] : 1 ≤
i1 < . . . < is ≤ q} given by the 

(
q
s

)
Taylor symbols corresponding to subsets of size s. 

That is, Fs =
⊕

i1<...<is

S[li1 , . . . , lis ] (note that F0 = S[∅]). Define

f0 : F0 → S/M

s[∅] �→ f0(s[∅]) = s

For s = 1, . . . , q, let fs : Fs → Fs−1 be given by

fs ([li1 , . . . , lis ]) =
s∑

j=1

(−1)j+1 lcm(li1 , . . . , lis)
lcm(li1 , . . . , l̂ij , . . . , lis)

[li1 , . . . , l̂ij , . . . , lis ]

and extended by linearity. The Taylor resolution Tl1,...,lq of S/M is the exact sequence

Tl1,...,lq : 0 → Fq
fq−−→ Fq−1 → · · · → F1

f1−−→ F0
f0−−→ S/M → 0.

We define the multidegree of a Taylor symbol [li1 , . . . , lis ], denoted mdeg[li1 , . . . , lis ], 
as follows: mdeg[li1 , . . . , lis ] = lcm(li1 , . . . , lis) (if lcm(li1 , . . . , lis) = xα1

1 . . . xαn
n , then we 

have mdeg[li1 , . . . , lis ] = xα1
1 . . . xαn

n ; however, many authors define the multidegree as 
the n-tuple mdeg[li1 , . . . , lis ] = (α1, . . . , αn)). The Taylor symbols [li1 , . . . , lis ] are called
faces. A Taylor symbol of the form [li1 , . . . , ̂lij , . . . , lis ] is referred to as a facet of the face 
[li1 , . . . , lis ].

Note: In our construction above, the generating set {l1, . . . , lq} is not required to be 
minimal. Thus, S/M has many Taylor resolutions. We reserve the notation TM for the 
Taylor resolution of S/M , determined by the minimal generating set of M . (Although 
some authors define a single Taylor resolution of S/M , our construction is general, like 
in [5, Exercise 17.11].)

Construction 2.2. Let M be minimally generated by {l1, . . . , lq}. Let A be the set of 
Taylor symbols of TM whose multidegrees are not common to other Taylor symbols; 
that is, a Taylor symbol [σ] is in A if and only if mdeg[σ] �= mdeg[σ′], for every Taylor 
symbol [σ′] �= [σ]. For each s = 0, . . . , q, set Gs equal to the free S-module with basis 
{[li1 , . . . , lis ] ∈ A : 1 ≤ i1 < . . . < is ≤ q}. For each s = 0, . . . , q, let gs = fs �Gs

. It can 
be proven that the gs are well defined (more precisely, that gs (Gs) ⊆ Gs−1) and that

0 → Gq
gq−−→ Gq−1 → · · · → G1

g1−−→ G0
g0−−→ S/M → 0

is a subcomplex of TM , which is called the Scarf complex of S/M .

Definition 2.3. Let M be a monomial ideal, and let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−−→ F0
f0−−→ S/M → 0
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be a free resolution of S/M . We say that a basis element [σ] of F has homological degree i, 
denoted hdeg[σ] = i, if [σ] ∈ Fi. F is said to be a minimal resolution if for every i, the 
differential matrix (fi) of F has no invertible entries.

Definition 2.4. Let M be a monomial ideal, and let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−−→ F0
f0−−→ S/M → 0

be a minimal free resolution of S/M .

• For every i ≥ 0, the ith Betti number bi (S/M) of S/M is bi (S/M) = rank(Fi).
• For every i ≥ 0, and every monomial l, the multigraded Betti number bi,l (S/M) of 

S/M , in homological degree i and multidegree l, is

bi,l (S/M) = #{basis elements [σ] of Fi : mdeg[σ] = l}.

• The projective dimension pd (S/M) of S/M is

pd (S/M) = max{i : bi (S/M) �= 0}.

Definition 2.5. Let M be minimally generated by a set of monomials G.

• A monomial m ∈ G is called dominant (in G) if there is a variable x, such that for all 
m′ ∈ G \ {m}, the exponent with which x appears in the factorization of m is larger 
than the exponent with which x appears in the factorization of m′. The set G is 
called dominant if each of its elements is dominant. The ideal M is called dominant
if G is dominant.

• G is called p-semidominant if G contains exactly p nondominant monomials. The 
ideal M is p-semidominant if G is p-semidominant.

• We say that G is purely nondominant when all the elements of G are nondominant. 
In this case, we also say that M is purely nondominant.

Example 2.6. Let M1, M2, and M3 be minimally generated by G1 = {a2, b3, ab}, G2 =
{ab, bc, ac}, and G3 = {a2b, ab3c, bc2}, respectively. Note that a2 and b3 are dominant 
in G1, but ab is not. Thus, both the set G1 and the ideal M1 are 1-semidominant. On 
the other hand, ab, bc, and ac are nondominant in G2. Therefore, G2 and M2 are purely 
nondominant (as well as 3-semidominant). Finally, a2b, ab3c, and bc2 are dominant in G3. 
Thus, G3 and M3 are dominant.

3. Isomorphism theorems

The main goal of this paper is to express the multigraded Betti numbers of an ideal 
M as the sum of the multigraded Betti numbers of some ideals Mm, where each m is 
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a monomial carefully chosen. In this section we construct the Mm, and prove that the 
basis of the minimal resolution of S/Mm is in bijective correspondence f with a subset of 
the minimal resolution of S/M . We also show that there is a strong connection between 
the homological degrees and multidegrees of the elements in the domain and range of f . 
More precisely, we prove that there is an integer j such that hdeg f [σ] = j + hdeg[σ], 
and mdeg f [σ] = m mdeg[σ] (Theorem 3.13 (ii)).

The notation that we introduce below retains its meaning until the end of this section. 
Let M be a monomial ideal with minimal generating set G = {m1, . . . , mq, n1, . . . , np}, 
where m1, . . . , mq are dominant, and n1, . . . , np are nondominant. Let 1 ≤ d ≤ q, and let 
H = {h1, . . . , hc} = {md+1, . . . , mq, n1, . . . , np}. Then G can be expressed in the form 
G = {m1, . . . , md, h1, . . . , hc}. Let m = lcm(mr1 , . . . , mrj ), where 1 ≤ r1 < . . . < rj ≤ d. 

By convention, if j = 0, m = 1. For all s = 1, . . . , c, let h′
s = lcm(m,hs)

m
. Let Mm =

(h′
1, . . . , h

′
c).

Example 3.1. Let M = (a3b2, c3d, ac2, a2c, b2d, abc, bcd). Note that M is 5-semidominant, 
with m1 = a3b2, m2 = c3d, n1 = ac2, n2 = a2c, n3 = b2d, n4 = abc, n5 = bcd. If we 
set d = 2, then H = {h1, . . . , h5} = {n1, . . . , n5}. Suppose that m = lcm(m1) = a3b2. 

Then Mm = (h′
1, . . . , h

′
5), where h′

1 = lcm(a3b2, ac2)
a3b2

= c2; h′
2 = lcm(a3b2, a2c)

a3b2
= c; 

h′
3 = lcm(a3b2, b2d)

a3b2
= d; h′

4 = lcm(a3b2, abc)
a3b2

= c; h′
5 = lcm(a3b2, bcd)

a3b2
= cd. Thus, 

Ma3b2 = (c2, c, d, c, cd). Although {c2, c, d, c, cd} does not generate Ma3b2 minimally, 
sometimes, nonminimal generating sets like this will serve our purpose.

Proposition 3.2. Let 1 ≤ s1 < . . . < si ≤ c. The Taylor symbols [h′
s1 , . . . , h

′
si ] of Th′

1,...,h
′
c
, 

and [mr1 , . . . , mrj , hs1 , . . . , hsi ] of TM , satisfy

mdeg[mr1 , . . . ,mrj , hs1 , . . . , hsi ] = mmdeg[h′
s1 , . . . , h

′
si ].

Proof. Let s ∈ {s1, . . . , si}. Note that hs | lcm(m, hs) = mh′
s, and mh′

s | m lcm(h′
s1 ,

. . . , h′
si). Thus, hs | m lcm(h′

s1 , . . . , h
′
si). Since s is arbitrary, lcm(m, hs1 , . . . , hsi) |

m lcm(h′
s1 , . . . , h

′
si). We will show that m lcm(h′

s1 , . . . , h
′
si) | lcm(m, hs1 , . . . , hsi).

Let h′
s1 = xα11

1 . . . xα1n
n , . . . , h′

si = xαi1
1 . . . xαin

n , and let γ1 = max(α11, . . . , αi1), . . . ,
γn = max(α1n, . . . , αin). Then lcm(h′

s1 , . . . , h
′
si) = xγ1

1 . . . xγn
n . Notice that mxγ1

1 divides 
one of mh′

s1 = lcm(m, hs1), . . . , mh′
si = lcm(m, hsi), and therefore, mxγ1

1 | lcm(m,

hs1 , . . . , hsi). Similarly, mxγ2
2 , . . . , mxγn

n | lcm(m, hs1 , . . . , hsi). Thus, xγ1
1 , . . . , xγn

n |
lcm(m,hs1 , . . . , hsi)

m
. It follows that lcm(h′

s1 , . . . , h
′
si) =xγ1

1 . . . xγn
n | lcm(m,hs1 , . . . , hsi)

m
, 

which is equivalent to saying that m lcm(h′
s1 , . . . , h

′
si) | lcm(m, hs1 , . . . , hsi). Finally,

mmdeg[h′
s1 , . . . , h

′
si ] = m lcm(h′

s1 , . . . , h
′
si)

= lcm(m,hs1 , . . . , hsi)
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= lcm(lcm(mr1 , . . . ,mrj ), hs1 , . . . , hsi)

= lcm(mr1 , . . . ,mrj , hs1 , . . . , hsi)

= mdeg[mr1 , . . . ,mrj , hs1 , . . . , hsi ]. �
Example 3.3. Let M , m, and H be as in Example 3.1. The Taylor symbols [h′

2, h
′
3] =

[c, d] of Tc2,c,d,c,cd, and [m1, h2, h3] = [a3b2, a2c, b2d] of TM , have multidegrees cd and 
a3b2cd, respectively. Therefore, mdeg[a3b2, c, d] = a3b2 mdeg[c, d], which is consistent 
with Proposition 3.2.

Note: We will say that a monomial l occurs in a resolution F if there is a basis element 
of F with multidegree l. If a is an entry of a differential matrix of a resolution F and 
[σ] is an element of the basis of F, by abusing the language we will often say that a is 
an entry of F and [σ] is an element of F. Moreover, sometimes we will use the notation 
[σ] ∈ F.

Theorem 3.4. Let m′ be a multidegree that occurs in Th′
1,...,h

′
c
.

(i) There are no basis elements of TM , with multidegree mm′ and homological degree 
less than j.

(ii) For every i, there is a bijective correspondence between the basis elements of Th′
1,...,h

′
c
, 

with multidegree m′ and homological degree i, and the basis elements of TM , with 
multidegree mm′ and homological degree i + j.

Proof. (i) Let [h′
s1 , . . . , h

′
si ] be a basis element of Th′

1,...,h
′
c
, with multidegree m′. By 

Proposition 3.2,

mm′ = mmdeg[h′
s1 , . . . , h

′
si ] = mdeg[mr1 , . . . ,mrj , hs1 , . . . , hsi ].

It follows that every basis element [σ] of TM , with multidegree mm′, must contain the 
same dominant monomials mr1 , . . . , mrj [1, Lemma 4.3]. This means that hdeg[σ] ≥ j.

(ii) Let Ai,m′ =
{
[σ] ∈ Th′

1,...,h
′
c

: hdeg[σ] = i; mdeg[σ] = m′}.
Let Bi,m′ = {[σ] ∈ TM : hdeg[σ] = i + j; mdeg[σ] = mm′}.
Let fi,m′ : Ai,m′ → Bi,m′ be defined by fi,m′ [h′

s1 , . . . , h
′
si ] = [mr1 , . . . , mrj , hs1 ,

. . . , hsi ].
Notice that fi,m′ is well defined:
if [σ] ∈ Ai,m′ , then hdeg fi,m′ [σ] = i + j and by Proposition 3.2, mm′ = m mdeg[σ] =

mdeg fi,m′ [σ].
Besides that, fi,m′ is one to one:

fi,m′ [h′
s1 , . . . , h

′
si ] = fi,m′ [h′

t1 , . . . , h
′
ti ]

⇒ [mr1 , . . . ,mrj , hs1 , . . . , hsi ] = [mr1 , . . . ,mrj , ht1 , . . . , hti ]
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⇒ hs1 = ht1 , · · · , hsi = hti

⇒ [h′
s1 , . . . , h

′
si ] = [h′

t1 , . . . , h
′
ti ].

Finally, fi,m′ is onto:
Suppose that [τ ] is in Bi,m′ . Let [h′

t1 , . . . , h
′
tk

] be an element in Th′
1,...,h

′
c
, with multi-

degree m′. By Proposition 3.2,

mm′ = mmdeg[h′
t1 , . . . , h

′
tk

] = mdeg[mr1 , . . . ,mrj , ht1 , . . . , htk ].

Since [τ ] and [mr1 , . . . , mrj , ht1 , . . . , htk ] are basis elements of equal multidegree, they 
must contain the same dominant monomials [1, Lemma 4.3] and, given that [τ ] has 
homological degree i + j, [τ ] must be of the form [τ ] = [mr1 , . . . , mrj , hs1 , . . . , hsi ]. By 
Proposition 3.2, [h′

s1 , . . . , h
′
si ] ∈ Ai,m′ , and fi,m′ [h′

s1 , . . . , h
′
si ] = [τ ]. �

Note: Since consecutive cancellations take place between Taylor symbols of equal mul-
tidegree, and by [1, Lemma 4.3] two Taylor symbols of equal multidegree contain the same 
dominant generators, it is reasonable to associate the Taylor symbols whose multidegrees 
are divisible by the same dominant generators in a common class. For example, if m =
lcm(mr1 , . . . , mrj ), we can define the class Bm = {[mr1 , . . . , mrj , hs1 , . . . , hsi ] : 1 ≤ s1 <

. . . < si ≤ c}. If a consecutive cancellation eliminates two Taylor symbols [σ1], [σ2] ∈ TM , 
and [σ1] ∈ Bm, then [σ2] ∈ Bm. That is, consecutive cancellations take place between 
Taylor symbols of the same class Bm. The class Bm motivated the construction of Mm; 
in fact, the basis of the Taylor resolution Th′

1,...,h
′
c

is analogous to Bm as Theorem 3.4
shows (recall the bijective correspondence [h′

s1 , . . . , h
′
si ] → [mr1 , . . . , mrj , hs1 , . . . , hsi ]).

Example 3.5. Let M , m, and H be as in Example 3.1. Let m′ = cd. Since the only 
basis element of TM in homological degree 0 is [∅], and mdeg[∅] = 1, there are no basis 
elements of TM in homological degree 0 and multidegree mm′ = a3b2cd. This illustrates 
Theorem 3.4(i). On the other hand, the basis elements of Tc2,c,d,c,cd with multidegree 
m′ = cd are

[h′
5], in homological degree 1;

[h′
2, h

′
5], [h′

3, h
′
5], [h′

4, h
′
5], [h′

2, h
′
3], [h′

3, h
′
4] in homological degree 2;

[h′
2, h

′
3, h

′
5], [h′

2, h
′
4, h

′
5], [h′

3, h
′
4, h

′
5], [h′

2, h
′
3, h

′
4] in homological degree 3; and

[h′
2, h

′
3, h

′
4, h

′
5] in homological degree 4.

Similarly, the basis elements of TM with multidegree mm′ = a3b2cd are

[m1, h5] in homological degree 2;
[m1, h2, h5], [m1, h3, h5], [m1, h4, h5], [m1, h2, h3], [m1, h3, h4], in homological degree 3;
[m1, h2, h3, h5], [m1, h2, h4, h5], [m1, h3, h4, h5], [m1, h2, h3, h4] in homological degree 4; 
and
[m1, h2, h3, h4, h5] in homological degree 5, which illustrates the bijective correspondence 
of Theorem 3.4(ii).
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Notation: for every multidegree m′ that occurs in Th′
1,...,h

′
c

and every i = 0, . . . , c, let 
fi,m′ : Ai,m′ → Bi,m′ be the bijection constructed in Theorem 3.4. Let Ai =

⋃
m′

Ai,m′

and Bi =
⋃
m′

Bi,m′ . Let us define fi : Ai → Bi by fi[σ] = fi,m′ [σ], if mdeg[σ] = m′. Let 

A =
⋃
i

Ai; B =
⋃
i

Bi. Let us define f : A → B by f [σ] = fi[σ], if hdeg[σ] = i. Note that 

A is the basis of Th′
1,...,h

′
c
, and f is a bijection that sends an element with multidegree m′

and homological degree i to an element with multidegree mm′ and homological degree 
i + j.

Recall that a differential matrix (fk) associated to a differential map fk : Fk → Fk−1
is determined by the basis elements of Fk and Fk−1. That is, if {[σ1], . . . , [σu]} and 

{[τ1], . . . , [τv]} are bases of Fk and Fk−1, respectively, and fk[σj ] =
v∑

i=1
aτiσj

[τi], then the 

entry of (fk) that appears in the jth column and the ith row is aτiσj
. Therefore, we can 

say that aτiσj
is determined by [σj ] and [τi]. In the next lemma we make reference to 

this identification.

Lemma 3.6. If aπθ is an entry of Th′
1,...,h

′
c
, determined by elements [θ], [π] ∈ A, then 

f [θ], f [π] determine an entry bπθ of TM such that bπθ = (−1)jaπθ.

Proof. Since [θ], [π] appear in consecutive homological degrees, so do f [θ], f [π]. Thus, 
f [θ], f [π] determine an entry bπθ of TM .

If [π] is a facet of [θ], then f [π] is also a facet of f [θ] and, these elements are of the 
form:

[θ] = [h′
s1 , . . . , h

′
si ]; [π] = [h′

s1 , . . . , ĥ
′
st , . . . , h

′
si ];

f [θ] = [mr1 , . . . ,mrj , hs1 , . . . , hsi ]; f [π] = [mr1 , . . . ,mrj , hs1 , . . . , ĥst , . . . , hsi ]

Thus bπθ = (−1)j+t+1 mdeg f [θ]
mdeg f [π] = (−1)j(−1)t+1 mmdeg[θ]

mmdeg[π] = (−1)jaπθ.

On the other hand, if [π] is not a facet of [θ], f [π] cannot be a facet of f [θ], either. 
Thus aπθ = 0 = bπθ. �

Notation: let F0 = Th′
1,...,h

′
c
. If there is an invertible entry a(0)

π0θ0
of F0, determined by 

elements [θ0], [π0] ∈ F0, let F1 be the resolution of S/Mm such that

F0 = F1 ⊕ (0 → S[θ0] → S[π0] → 0) .

Let us assume that Fk−1 has been defined for k ≥ 2. If there is an invertible entry 
a
(k−1)
πk−1θk−1

of Fk−1, determined by elements [θk−1], [πk−1] of Fk−1, let Fk be the resolution 
of S/Mm such that

Fk−1 = Fk ⊕ (0 → S[θk−1] → S[πk−1] → 0) .
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Theorem 3.7. Suppose that F0, . . . , Fu are resolutions of S/Mm, defined as above. Then

(i) It is possible to define resolutions G0, . . . , Gu of S/M , as follows:

G0 = TM ; Gk−1 = Gk ⊕ (0 → Sf [θk−1] → Sf [πk−1] → 0) .

(ii) If a(u)
τσ is an entry of Fu, determined by elements [σ], [τ ] of Fu, then f [σ], f [τ ] are 

in the basis of Gu and determine an entry b(u)
τσ of Gu, such that b(u)

τσ = (−1)ja(u)
τσ .

Proof. The proof is by induction on u. If u = 0, (i) and (ii) are the content of Lemma 3.6.
Let us assume that parts (i) and (ii) hold for u − 1. We will prove parts (i) and (ii) 

for u.
(i) We need to show that Gu can be defined by the rule

Gu−1 = Gu ⊕ (0 → Sf [θu−1] → Sf [πu−1] → 0) .

In other words, we must show that f [θu−1], f [πu−1] are in the basis of Gu−1, and the entry 
b
(u−1)
πu−1θu−1

of Gu−1, determined by them, is invertible. But this follows from induction 

hypothesis and the fact that a(u−1)
πu−1θu−1

is invertible.
(ii) Notice that the basis of Fu is obtained from the basis of Fu−1, by eliminating 

[θu−1], [πu−1]. This means that [σ], [τ ] are in the basis of Fu−1, and the pairs ([σ], [τ ]), 
([θu−1], [πu−1]) are disjoint. Then by induction hypothesis, f [σ], f [τ ] are in the basis 
of Gu−1, and because f is a bijection, (f [σ], f [τ ]), (f [θu−1], f [πu−1]) are disjoint pairs. 
Since the basis of Gu is obtained from the basis of Gu−1, by eliminating f [θu−1], f [πu−1], 
we must have that f [σ], f [τ ] are in the basis of Gu. Finally, we need to prove that b(u)

τσ =
(−1)ja(u)

τσ . By [1, Lemma 3.2(iv)], if hdeg[σ] �= hdeg[θu−1], then a(u)
τσ = a

(u−1)
τσ . In this 

case, we must also have that hdeg f [σ] �= hdeg f [θu−1], which implies that b(u)
τσ = b

(u−1)
τσ , 

by the same lemma. Then, by induction hypothesis, b(u)
τσ = b

(u−1)
τσ = (−1)ja(u−1)

τσ =
(−1)ja(u)

τσ . On the other hand, if hdeg[σ] = hdeg[θu−1], then hdeg f [σ] = hdeg f [θu−1]. 
Combining the induction hypothesis with [1, Lemma 3.2(iii)], we obtain

b(u)
τσ = b(u−1)

τσ −
b
(u−1)
τθu−1

b
(u−1)
πu−1σ

b
(u−1)
πu−1θu−1

= (−1)j
⎛⎝a(u−1)

τσ −
a
(u−1)
τθu−1

a
(u−1)
πu−1σ

a
(u−1)
πu−1θu−1

⎞⎠ = (−1)ja(u)
τσ �

Since the process of making standard cancellations must eventually terminate, there 
is an integer u ≥ 0, such that F0, . . . , Fu are defined as above and Fu is a minimal 
resolution of S/Mm. For the rest of this section u is such an integer and Fu is such a 
minimal resolution. Moreover, the resolutions F0, . . . , Fu and G0, . . . , Gu are also fixed 
for the rest of this section.

Notation: Let A′ = A \ {[θ0], [π0], . . . , [θu−1], [πu−1]} and B′ = B \ {f [θ0], f [π0], . . . ,
f [θu−1], f [πu−1]}. Notice that A′ is the basis of the minimal resolution Fu.
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Corollary 3.8. If b(u)
πθ is an entry of Gu, determined by elements f [θ], f [π] ∈ B′, then b(u)

πθ

is noninvertible.

Proof. Since f [θ], f [π] ∈ B′, [θ], [π] ∈ A′ and thus, the entry a(u)
πθ of Fu is noninvertible. 

Now, by Theorem 3.7(ii), b(u)
πθ is noninvertible. �

Theorem 3.9. Let m′ be a multidegree that occurs in TMm
.

(i) There are no basis elements of Gu, with multidegree mm′ and homological degree 
less than j.

(ii) For every i = 0, . . . , c, there is a bijective correspondence between the basis elements 
of Fu, with multidegree m′ and homological degree i, and the basis elements of Gu, 
with multidegree mm′ and homological degree i + j.

Proof. (i) Since the basis of Gu is contained in that of TM , the statement follows from 
Theorem 3.4(i).

(ii) The set of basis elements of Fu, with multidegree m′ and homological de-
gree i is A′

i,m′ = Ai,m′ \ {[θ0], [π0], . . . , [θu−1], [πu−1]}. Similarly, the set of basis ele-
ments of Gu, with multidegree mm′ and homological degree i + j is B′

i,m′ = Bi,m′ \
{f [θ0], f [π0], . . . , f [θu−1], f [πu−1]}. Notice that [θk] ∈ Ai,m′ if and only if f [θk] ∈ Bi,m′ . 
Likewise, [πk] ∈ Ai,m′ if and only if f [πk] ∈ Bi,m′ . Therefore, if we restrict fi,m′ : Ai,m′ →
Bi,m′ to A′

i,m′ , we get a bijection between A′
i,m′ and B′

i,m′ . �
Notation: If b(u)

γ0δ0
is an invertible entry of Gu, determined by basis elements [δ0], [γ0]

of Gu, let Gu+1 be the resolution of S/M such that

Gu = Gu+1 ⊕ (0 → S[δ0] → S[γ0] → 0) .

Assume that Gu+(k−1) has been defined. If b(u+k−1)
γk−1δk−1

is an invertible entry of Gu+(k−1), 
determined by basis elements [δk−1], [γk−1] of Gu+(k−1), let Gu+k be the resolution of 
S/M such that

Gu+(k−1) = Gu+k ⊕ (0 → S[δk−1] → S[γk−1] → 0) .

Theorem 3.10. Suppose that Gu, Gu+1 are defined as above. If b(u)
πθ is an entry of Gu, 

determined by elements f [θ], f [π] ∈ B′, then f [θ], f [π] are in the basis of Gu+1. Moreover, 
the entry b(u+1)

πθ of Gu+1, determined by f [θ] and f [π] is noninvertible.

Proof. Since Gu = Gu+1 ⊕ (0 → S[δ0] → S[γ0] → 0), we have that b(u)
γ0δ0

is invertible, 
[δ0], [γ0] are in Gu, in consecutive homological degrees, and mdeg[δ0] = mdeg[γ0]. Sup-
pose that [δ0], [γ0] ∈ B′. Then there are elements [σ], [τ ] ∈ A′, in consecutive homological 
degrees, such that f [σ] = [δ0] and f [τ ] = [γ0]. By Theorem 3.9(ii), [σ], [τ ] are in Fu and 
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determine an entry a(u)
τσ . Now, it follows from Theorem 3.7(ii), that b(u)

γ0δ0
= (−1)ja(u)

τσ . 
This means that a(u)

τσ is invertible and Fu is not minimal, a contradiction. On the other 
hand, if only one of [δ0], [γ0] is in B′, then mdeg[δ0] �= mdeg[γ0]; another contradic-
tion. We conclude that neither [δ0] nor [γ0] is in B′ and therefore, the pairs (f [θ], f [π]); 
([δ0], [γ0]) are disjoint. This proves that f [θ], f [π] are in the basis of Gu+1.

Let us finally prove that b(u+1)
πθ is noninvertible. If hdeg f [θ] �= hdeg[δ0], then b(u+1)

πθ =
b
(u)
πθ by [1, Lemma 3.2(iv)], and by Corollary 3.8, b(u+1)

πθ is noninvertible. If hdeg f [θ] =

hdeg[δ0], by [1, Lemma 3.2(iii)], we have b(u+1)
πθ = b

(u)
πθ −

b
(u)
πδ0

b
(u)
γ0θ

b
(u)
γ0δ0

. Since b(u)
πθ = (−1)ja(u)

πθ , 

b
(u)
πθ is noninvertible. Since mdeg f [π] �= mdeg[δ0], the entry b(u)

πδ0
of Gu, determined 

by [δ0], f [π], is noninvertible. Hence, the product b(u)
πδ0

b
(u)
γ0θ

must be noninvertible. This 

means that the quotient 
b
(u)
πδ0

b
(u)
γ0θ

b
(u)
γ0δ0

is noninvertible. Finally, b(u+1)
πθ is noninvertible, for the 

difference of two noninvertible monomials is noninvertible. �
Theorem 3.11. Suppose that Gu, . . . , Gu+v are defined as above. If b(u)

πθ is an entry of Gu, 
determined by elements f [θ], f [π] ∈ B′, then f [θ], f [π] are in the basis of Gu+v, and the 
entry b(u+v)

πθ of Gu+v, determined by f [θ], f [π] is noninvertible.

Proof. The proof is by induction on v. If v = 1, the statement is the content of 
Theorem 3.10. Let us assume that the statement holds for v − 1. Since Gu+(v−1) =
Gu+v ⊕ (0 → S[δv−1] → S[γv−1] → 0), it follows that the entry b(u+v−1)

γv−1δv−1
of Gu+(v−1), 

determined by [δv−1], [γv−1], is invertible. If we had that [δv−1], [γv−1] ∈ B′, then, by 
induction hypothesis, b(u+v−1)

γv−1δv−1
would be noninvertible, a contradiction. On the other 

hand, if exactly one of [δv−1], [γv−1] were in B′, their multidegrees would be different, 
another contradiction. Hence, neither [δv−1] nor [γv−1] is in B′. This means that the 
pairs (f [θ], f [π]), ([δv−1], [γv−1]) are disjoint. Thus, f [θ], f [π] are in the basis of Gu+v.

Let us now prove that b(u+v)
πθ is noninvertible. If hdeg f [θ] �= hdeg[δv−1], then b(u+v)

πθ =
b
(u+v−1)
πθ by [1, Lemma 3.2 (iv)], and the result follows from induction hypothesis. Now, 

if hdeg f [θ] = hdeg[δv−1],

b
(u+v)
πθ = b

(u+v−1)
πθ −

b
(u+v−1)
πδv−1

b
(u+v−1)
γv−1θ

b
(u+v−1)
γv−1δv−1

by [1, Lemma 3.2(iii)]. Notice that b(u+v−1)
πθ is noninvertible, by induction hypothesis. 

Since mdeg f [π] �= mdeg[δv−1], it follows that the entry b(u+v−1)
πδv−1

of Gu+(v−1), deter-
mined by [δv−1], f [π], is noninvertible. This implies that the product b

(u+v−1)
πδv−1

b
(u+v−1)
γv−1θ

is noninvertible. Moreover, since b(u+v−1)
γv−1δv−1

is invertible, the quotient 
b
(u+v−1)
πδv−1

b
(u+v−1)
γv−1θ

b
(u+v−1)

γv−1δv−1
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is noninvertible. Finally, b(u+v)
πθ is noninvertible, for the difference of two noninvertible 

monomials is noninvertible. �
Since the process of making standard cancellations must eventually terminate, there 

is an integer v ≥ 0, such that Gu, . . . , Gu+v are defined as above, and Gu+v is a minimal 
resolution of S/M .

For the rest of this section, v is such an integer and Gu+v is such a minimal resolution. 
Moreover, the resolutions Gu, . . . , Gu+v are fixed for the rest of this section.

Theorem 3.12. Let m′ be a multidegree that occurs in TMm
. For each i, there is a bijective 

correspondence between the basis elements of Gu, with multidegree mm′ and homological 
degree i + j, and the basis elements of Gu+v, with multidegree mm′ and homological 
degree i + j.

Proof. Since the basis of Gu+v is contained in that of Gu, every basis element of Gu+v, 
with multidegree mm′ and homological degree i + j is in Gu. Conversely, every basis 
element of Gu, with multidegree mm′ and homological degree i + j is in Gu+v, by 
Theorem 3.11. �
Theorem 3.13. Let F be a minimal resolution of S/Mm, and let G be a minimal free 
resolution of S/M . Let m′ be a multidegree that occurs in TMm

. Then

(i) There are no basis elements of G, with multidegree mm′ and homological degree less 
than j.

(ii) For each i, there is a bijective correspondence between the basis elements of F, with 
multidegree m′ and homological degree i, and the basis elements of G, with multide-
gree mm′ and homological degree i + j.

Proof. (i) Since the basis of G is contained in that of TM , this part follows from Theo-
rem 3.4(i).

(ii) This part follows immediately from Theorem 3.9(ii) and Theorem 3.12. �
Example 3.14. Consider Example 3.1, again. Recall that M = (m1, m2, h1, h2, h3,

h4, h5) = (a3b2, c3d, ac2, a2c, b2d, abc, bcd), and m = lcm(m1) = a3b2. Since Mm =
(c2, c, d, c, cd) = (c, d), the minimal resolution of S/Mm is of the form

F : 0 → S[c, d] →
S[c]
⊕
S[d]

→ S[∅] → S/Mm → 0.

Thus, b0,1 (S/Mm) = b1,c (S/Mm) = b1,d (S/Mm) = b2,cd (S/Mm) = 1. By The-
orem 3.13(ii) (with m = a3b2, and j = 1), b1,a3b2 (S/M) = b2,a3b2c (S/M) =
b2,a3b2d (S/M) = b3,a3b2cd (S/M) = 1. By Theorem 3.13(i), b0,a3b2 (S/M) =
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b0,a3b2c (S/M) = b0,a3b2d (S/M) = b0,a3b2cd (S/M) = 0. (In the next section we will 
give the entire list of multigraded Betti numbers of S/M .)

4. Structural decomposition theorems

The notation below retains its meaning until the end of this section.
Let M be an ideal with minimal generating set G = {m1, . . . , mq, n1, . . . , np}, where 

m1, . . . , mq are dominant, n1, . . . , np are nondominant, q ≥ 1, and p ≥ 0. Let 1 ≤ d ≤ q, 
and let H = {md+1, . . . , mq, n1, . . . , np}. Then G can be expressed in the form G =
{m1, . . . , md, h1, . . . , hc}, where H = {h1, . . . , hc}.

• If c > 0, let C = {(j, m) ∈ Z+ × S : there are integers 1 ≤ r1 < · · · <

rj ≤ d, such that m = lcm(mr1 , . . . , mrj )} 
⋃
{(0, 1)}. For each (j, m) ∈ C, let 

Mm = (h′
1, . . . , h

′
c), where h′

i = lcm(m,hi)
m

.
• If c = 0, let C = {(0, 1)} and let M1 = M .

Theorem 4.1. For each integer k and each monomial l,

bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm).

Proof. If c = 0, the theorem is trivial. Let us consider the case c > 0.
If bk,l(S/M) = 0, then 

∑
(j,m)∈C

bk−j,l/m(S/Mm) = 0, by Theorem 3.13(ii). Suppose 

now that bk,l(S/M) �= 0. Then there is an element [τ ] in the basis of a minimal resolution 
of S/M , such that hdeg[τ ] = k and mdeg[τ ] = l. Let mr1 , . . . , mrj be the dominant mono-
mials that are contained in [τ ], and such that {mr1 , . . . , mrj} is a subset of {m1, . . . , md}. 
Since all basis elements of TM with equal multidegree must contain the same dominant 
monomials [1, Lemma 4.3], every basis element of TM in homological degree k and mul-
tidegree l must be of the form [mr1 , . . . , mrj , hs1 , . . . , hsk−j

]. Let m = lcm(mr1 , . . . , mrj ). 
Then (j, m) ∈ C, and bk,l(S/M) = bk−j,l/m(S/Mm), by Theorem 3.13(ii).

We will complete the proof by showing that bk−j′,l/m(S/Mm′) = 0, for all 
(j′, m′) ∈ C \ {(j, m)}. Let (j′, m′) ∈ C. Then there are dominant monomials 
mu1 , . . . , muj

, such that m′ = lcm(mu1 , . . . , muj′ ). Suppose that bk−j,l/m(S/Mm′) �= 0. 
Then TMm′ has a basis element [h′

t1 , . . . , h
′
tk−j′

] with multidegree l/m. By Proposi-
tion 3.2, l = m mdeg[h′

t1 , . . . , h
′
tk−j′

] = mdeg[mu1 , . . . , muj′ , ht1 , . . . , htk−j′ ]. Since the 
basis elements of TM in homological degree k and multidegree l are of the form 
[mr1 , . . . , mrj , hs1 , . . . , hsk−j

], we must have that {mu1 , . . . , muj′ } = {mr1 , . . . , mrj}. 
In particular, j′ = j, and m′ = lcm(mu1 , . . . , muj′ ) = lcm(mr1 , . . . , mrj ) = m. Thus 
(j′, m′) = (j, m). �
Definition 4.2. Recall that G = {m1, . . . , mq, n1, . . . , np} = {m1, . . . , md, h1, . . . , hc} is 
the minimal generating set of M . If d = q, the equation
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bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm),

given by Theorem 4.1, will be called the first structural decomposition of M .

Note that when d = q, we have that c = p, and {h1, . . . , hc} = {n1, . . . , np}.

Example 4.3. Consider Example 3.1, again. Recall that M = (m1, m2, n1, n2, n3, n4, n5) =
(a3b2, c3d, ac2, a2c, b2d, abc, bcd), where {h1, . . . , h5} = {n1, . . . , n5}, and hence, d = q. 
By definition,

C = {(2, lcm(a3b2, c3d)); (1, lcm(a3b2)); (1, lcm(c3d)); (0, 1)}

= {(2, a3b2c3d); (1, a3b2); (1, c3d); (0, 1)}.

Now, each ordered pair (j, m) in C, determines a monomial ideal Mm. Namely, 

(2, a3b2c3d) defines Ma3b2c3d = (h′
1, h

′
2, h

′
3, h

′
4, h

′
5), where h′

1 = lcm(a3b2c3d, ac2)
a3b2c3d

= 1. 
Therefore, Ma3b2c3d = (1) = S.

Likewise, (1, a3b2) defines Ma3b2 = (c, d) (recall Example 3.14).

Also, (1, c3d) defines Mc3d = (h′
1, h

′
2, h

′
3, h

′
4, h

′
5), where h′

1 = lcm(c3d, ac2)
c3d

= a; 

h′
2 = lcm(c3d, a2c)

c3d
= a2; h′

3 = lcm(c3d, b2d)
c3d

= b2; h′
4 = lcm(c3d, abc)

c3d
= ab; 

h′
5 = lcm(c3d, bcd)

c3d
= b. Thus, Mc3d = (a, a2, b2, ab, b) = (a, b).

Finally, (0, 1) defines M1 = (ac2, a2c, b2d, abc, bcd). Therefore, the first structural de-
composition of M is

bk,l(S/M) = bk−1,l/a3b2

(
S

(c, d)

)
+ bk−1,l/c3d

(
S

(a, b)

)
+ bk,l

(
S

(ac2, a2c, b2d, abc, bcd)

)
.

Theorem 4.4. There is a family D of dominant ideals and a family N of purely non-
dominant ideals, such that

bk,l(S/M) =
∑
D∈D

bk−jD,l/mD
(S/D) +

∑
N∈N

bk−jN ,l/mN
(S/N),

where jD, jN are integers that depend on D and N , respectively, and mD, mN are 
monomials that depend on D and N , respectively.

Proof. Let

bk,l(S/M) =
∑

bk−j,l/m(S/Mm)

(j,m)
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be the first structural decomposition of M . If some Mm = (h′
1, . . . , h

′
p) (recall that 

c = p) is neither dominant nor purely nondominant, then its minimal generating set 
is of the form {u1, . . . , uq1 , v1, . . . , vp1}, where u1, . . . , uq1 are dominant, v1, . . . , vp1 are 
nondominant, q1 ≥ 1, p1 ≥ 1, and q1+p1 ≤ p. In particular, p1 ≤ p −1. Let bk,l(S/Mm) =∑
(j′,m′)

bk−j′,l/m′(S/Mm,m′) be the first structural decomposition of Mm. Combining the 

last two identities, we obtain

bk,l(S/M) =
∑
(j,m)

bk−j,l/m(S/Mm) =
∑
(j,m)

∑
(j′,m′)

bk−j−j′,l/mm′(S/Mm,m′).

If some Mm,m′ is neither dominant nor purely nondominant, then Mm,m′ =

(v′1, . . . , v′p1
) (where v′i = lcm(m′, vi)

m′ ), and the number p2 of nondominant gener-
ators in its minimal generating set is less than p1 (because Mm,m′ is minimally 
generated by at most p1 monomials). In particular, p2 ≤ p1 − 1 ≤ p − 2. Suppose 
that, after applying Theorem 4.1 r times, we obtain a decomposition bk,l(S/M) =∑
(j1,l1)

· · ·
∑

(jr,lr)
bk−j1−...−jr,l/l1...lr (S/Ml1,...,lr ), such that if some Ml1,...,lr is neither dom-

inant nor purely nondominant, then Ml1,...,lr = (w′
1, . . . , w

′
pr−1

), with pr−1 ≤ p − (r− 1).
If some Ml1,...,lr is neither dominant nor purely nondominant, then the number pr of 

nondominant generators in its minimal generating set is less than pr−1. In particular, 
pr ≤ pr−1 − 1 ≤ p − r. Therefore, after applying Theorem 4.1 p times, we obtain a 
decomposition

bk,l(S/M) =
∑

(j1,l1)

· · ·
∑

(jp,lp)

bk−j1−...−jp,l/l1...lp(S/Ml1,...,lp).

If we assume that there is an ideal Ml1,...,lp which is neither dominant nor purely non-
dominant, then Ml1,...,lp = (z′1, . . . , z′pp−1

), with pp−1 ≤ p − (p − 1) = 1.
But this scenario is not possible, for the minimal generating set of such an ideal must 

contain at least one dominant generator and at least one nondominant generator.
We conclude that each Ml1,...,lp is either dominant or purely nondominant. �

Definition 4.5. The equation

bk,l(S/M) =
∑
D∈D

bk−jD,l/mD
(S/D) +

∑
N∈N

bk−jN ,l/mN
(S/N)

constructed in the proof of Theorem 4.4 will be called second structural decomposi-
tion of M . The sum 

∑
D∈D

bk−jD,l/mD
(S/D) will be called dominant part of the second 

structural decomposition, and the sum 
∑

N∈N

bk−jN ,l/mN
(S/N) will be called purely non-

dominant part of the second structural decomposition.
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Note: Although Theorem 4.4 states the existence of a decomposition of the form

bk,l(S/M) =
∑
D∈D

bk−jD,l/mD
(S/D) +

∑
N∈N

bk−jN ,l/mN
(S/N),

the proof of Theorem 4.4 is constructive. In fact, we show that

bk,l(S/M) =
∑

(j1,l1)

· · ·
∑

(jp,lp)

bk−j1−...−jp,l/l1...lp(S/Ml1,...,lp),

where the ideals Ml1,...,lp are either dominant or purely nondominant, and they determine 
the dominant and purely nondominant part of the second structural decomposition.

Recall that if D is a dominant ideal, its minimal resolution is given by TD [1, Theo-
rem 4.4]. Therefore, when the second structural decomposition of M has no purely non-
dominant part, we can immediately compute the multigraded Betti numbers bk,l(S/M). 
Such is the case in the next example.

Example 4.6. In Example 3.1 we introduced the ideal M = (a3b2, c3d, ac2, a2c, b2d,
abc, bcd) and, in Example 4.3 we gave its first structural decomposition. We would like 
to read off the Betti numbers of S/M from the Betti numbers of the three ideals on the 
right side of that decomposition. The first two of these ideals, namely Ma3b2 = (c, d) and 
Mc3d = (a, b), are dominant. Hence, their minimal resolutions are TMa3b2

and TMc3d
, 

respectively. However, the third ideal, M1 = (ac2, a2c, b2d, abc, bcd), is not dominant. In 
order to obtain the multigraded Betti numbers of S/M1 we compute the first structural 
decomposition of M1 (we leave the details to the reader):

bk,l

(
S

M1

)
= bk−2,l/a2c2

(
S

(b)

)
+ bk−1,l/ac2

(
S

(b)

)
+ bk−1,l/a2c

(
S

(b)

)
+ bk−1,l/b2d

(
S

(c)

)
+ bk,l

(
S

(abc, bcd)

)
.

Now, if we combine this equation with the first structural decomposition of M , given 
in Example 4.3, we obtain

bk,l(S/M) = bk−1,l/a3b2

(
S

(c, d)

)
+ bk−1,l/c3d

(
S

(a, b)

)
+ bk−2,l/a2c2

(
S

(b)

)
+ bk−1,l/ac2

(
S

(b)

)
+ bk−1,l/a2c

(
S

(b)

)
+ bk−1,l/b2d

(
S

(c)

)
+ bk,l

(
S

(abc, bcd)

)
.

Note that this is the second structural decomposition of M , for each ideal on the 
right side of this decomposition is dominant. In order to compute bk,l(S/M), it would 
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be unwise to choose integers k and monomials l at random. We might take many guesses 
and still not find any nonzero multigraded Betti numbers. The right way to compute 
bk,l(S/M) is by first computing the minimal resolutions of the dominant ideals on the 
right side of the decomposition, which we do next.

• The multigraded Betti numbers of S/(c, d) are

b0,1(S/(c, d)) = b1,c(S/(c, d)) = b1,d(S/(c, d)) = b2,cd(S/(c, d)) = 1.

Therefore, bk−1,l/a3b2

(
S

(c, d)

)
= 1 when (k − 1, l/a3b2) equals one of (0, 1), (1, c), 

(1, d), (2, cd); that is, when (k, l) equals one of (1, a3b2), (2, a3b2c), (2, a3b2d), 
(3, a3b2cd).

• The multigraded Betti numbers of S/(a, b) are

b0,1(S/(a, b)) = b1,a(S/(a, b)) = b1,b(S/(a, b)) = b2,ab(S/(a, b)) = 1.

Therefore, bk−1,l/c3d

(
S

(a, b)

)
= 1 when (k − 1, l/c3d) equals one of (0, 1), (1, a), 

(1, b), (2, ab); that is, when (k, l) equals one of (1, c3d), (2, ac3d), (2, bc3d), (3, abc3d).
• The multigraded Betti numbers of S/(b) are b0,1(S/(b)) = b1,b(S/(b)) = 1.

Therefore, bk−2,l/a2c2

(
S

(b)

)
= 1, or bk−1,l/ac2

(
S

(b)

)
= 1, or bk−1,l/a2c

(
S

(b)

)
= 1, 

when (k − 2, l/a2c2) equals one of (0, 1), (1, b), or when (k − 1, l/ac2) equals one of 
(0, 1), (1, b), or when (k − 1, l/a2c) equals one of (0, 1), (1, b); that is, when (k, l)
equals one of (2, a2c2), (3, a2bc2), (1, ac2), (2, abc2), (1, a2c), (2, a2bc).

• The multigraded Betti numbers of S/(c) are b0,1(S/(c)) = b1,c(S/(c)) = 1.

Therefore, bk−1,l/b2d

(
S

(c)

)
= 1 when (k − 1, l/b2d) equals one of (0, 1), (1, c); that 

is, when (k, l) equals one of (1, b2d), (2, b2cd).
• The multigraded Betti numbers of S/(abc, bcd) are

b0,1(S/(abc, bcd)) = b1,abc(S/(abc, bcd)) = b1,bcd(S/(abc, bcd))

= b2,abcd(S/(abc, bcd)) = 1.

Therefore, bk,l

(
S

(abc, bcd)

)
= 1 when (k, l) equals one of (0, 1), (1, abc), (1, bcd), 

(2, abcd).

Thus, the nonzero multigraded Betti numbers of S/M are

b3,a3b2cd = b3,abc3d = b3,a2bc2 = b2,a3b2c = b2,a3b2d = b2,ac3d = b2,bc3d = b2,a2c2

= b2,abc2 = b2,a2bc = b2,b2cd = b2,abcd = b1,a3b2 = b1,c3d = b1,ac2

= b1,a2c = b1,b2d = b1,abc = b1,bcd = b0,1 = 1.
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Definition 4.7. Recall that G = {m1, . . . , md, h1, . . . , hc} is the minimal generating set 
of M . If d = 1, the equation

bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm),

given by Theorem 4.1, will be called the third structural decomposition of M .

Note that when d = 1, the right hand side of the equation above has only two terms. 
The third structural decomposition will be instrumental in the proof of Charalambous 
theorem, in Section 6.

5. Decompositions without purely nondominant part

When the second structural decomposition of M has no purely nondominant part, the 
numbers bk,l(S/M) can be easily computed, as illustrated in Example 4.6. In this section, 
however, our aim is to compute Betti numbers of classes of ideals rather than single ideals. 
More specifically, we will introduce two families of ideals whose decompositions have no 
purely nondominant part, and will give their multigraded Betti numbers explicitly.

Definition 5.1. Let L be the set of all monomials l such that the number of basis elements 
of TM , with multidegree l is odd.

(i) We say that M has characteristic Betti numbers, if for each monomial l

∑
k

bk,l(S/M) =
{

1 if l ∈ L,

0 otherwise.

(ii) For each l ∈ L, let

f(l) = min{hdeg[σ] : [σ] ∈ TM and mdeg[σ] = l}.

We say that M has characteristic Betti numbers in minimal homological degrees, if

bk,l(S/M) =
{

1 if l ∈ L and k = f(l),
0 otherwise.

Lemma 5.2. Let

bk,l(S/M) =
∑

bk−j,l/m(S/Mm)

(j,m)
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be the first structural decomposition of M . Then, the second structural decomposition of 
M has no purely nondominant part if and only if the second structural decomposition of 
each Mm has no purely nondominant part.

Proof. Let

bk,l(S/Mm) =
∑
D∈D

bk−jD,l/mD
(S/D) +

∑
N∈N

bk−jN ,l/mN
(S/N),

be the second structural decomposition of Mm. Then

bk,l(S/M) =
∑
(j,m)

bk−j,l/m(S/Mm) =

∑
(j,m)

( ∑
D∈Dm

bk−j−jD,l/mmD
(S/D) +

∑
N∈Nm

bk−j−jN ,l/mmN
(S/N)

)

is the second structural decomposition of M . �
Theorem 5.3. If the second structural decomposition of M has no purely nondominant 
part, then M has characteristic Betti numbers.

Proof. The proof is by induction on the cardinality of the minimal generating set G
of M .

If #G = 1 or #G = 2, then M is dominant and, by [1, Corollary 4.5], M is Scarf. 
Now, Scarf ideals have characteristic Betti numbers.

Suppose now that the theorem holds for ideals with minimal generating sets of cardi-
nality ≤ q − 1.

Let us assume that #G = q. By hypothesis, the second structural decomposition of M
has no purely nondominant part, which implies that M itself is not purely nondominant. 
Therefore, G must be of the form G = {m1, . . . , ms, n1, . . . , nt}, where m1, . . . , ms are 
dominant, n1, . . . , nt are nondominant, s > 0, and s + t = q. In particular, t ≤ q − 1. 
Now, the first structural decomposition of M is

bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm),

where each Mm is minimally generated by at most q − 1 monomials. Then,∑
k

bk,l(S/M) =
∑
k

∑
(j,m)

bk−j,l/m(S/Mm) =
∑
(j,m)

∑
k

bk−j,l/m(S/Mm).

Suppose that, for some monomial l, 
∑
k

bk,l(S/M) �= 0. Then, there must be a pair 

(j′, m′) ∈ C such that 
∑

bk−j′,l/m′(S/Mm′) �= 0. By Lemma 5.2, the second structural 

k
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decomposition of Mm′ has no purely nondominant part and, by induction hypothesis, 
Mm′ has characteristic Betti numbers. Hence, 

∑
k

bk−j′,l/m′(S/Mm′) = 1.

Suppose, by means of contradiction, that there is a pair (j, m) ∈ C \ {(j′, m′)} such 
that 

∑
k

bk−j,l/m(S/Mm) �= 0. Then, there exist basis elements [σ] ∈ TMm′ and [τ ] ∈

TMm
, such that mdeg[σ] = l/m′, and mdeg[τ ] = l/m. Recall that [σ], [τ ], m′, and 

m are of the form [σ] = [n′
a1
, . . . , n′

ac
]; [τ ] = [n′

b1
, . . . , n′

bd
]; m′ = lcm(mu1 , . . . , muj′ ); 

m = lcm(mv1 , . . . , mvj ). By Proposition 3.2 we have that

l = m′l/m′ = m′ mdeg[σ] = m′ mdeg[n′
a1
, . . . , n′

ac
] = mdeg[mu1 , . . . ,muj′ , na1 , . . . , nac

].

Similarly,

l = ml/m = mmdeg[τ ] = mmdeg[n′
b1 , . . . , n

′
bd

] = mdeg[mv1 , . . . ,mvj , nb1 , . . . , nbd ].

Hence, mdeg[mu1 , . . . , muj′ , na1 , . . . , nac
] and mdeg[mv1 , . . . , mvj , nb1 , . . . , nbd ] are two 

basis elements of TM , with the same multidegree l. By [1, Lemma 4.3], these basis el-
ements must contain the same dominant generators. However, since (j′, m′) �= (j, m), 
we must have that {mu1 , . . . , mu′

j
} �= {mv1 , . . . , mvj}, a contradiction. Therefore, ∑

k

bk−j,l/m(S/Mm) = 0, for all (j, m) ∈ C \ {(j′, m′)}. Thus,

∑
k

bk,l(S/M) =
∑
(j,m)

∑
k

bk−j,l/m(S/Mm) =
∑
k

bk−j′,l/m′(S/Mm′) = 1.

We have proven that 
∑
k

bk,l(S/M) ≤ 1, for each monomial l.

Since a minimal resolution F of S/M can be obtained from TM by making series of 
consecutive cancellations, and given that each consecutive cancellation involves a pair of 
basis elements of equal multidegree, the number of basis elements of TM with a given 
multidegree l is even if and only if the number of basis elements of F with multidegree l
is even. But the number of basis elements of F with multidegree l is 

∑
k

bk,l(S/M) ≤ 1, 

which proves the theorem. �
Note that Theorem 5.3 does not depict the entire family of ideals with characteris-

tic Betti numbers. In fact, M = (a2bc, b2c2, a2b2, abc2) is purely nondominant and has 
characteristic Betti numbers.

In Example 4.6, we computed the second structural decomposition of the ideal M =
(a3b2, c3d, ac2, a2c, b2d, abc, bcd), and noticed that it has no purely nondominant part. 
Right after, we found the numbers bk,l(S/M) and proved that, with the language of this 
section, M has characteristic Betti numbers. This is consistent with Theorem 5.3.

Lemma 5.4. Let bk,l(S/M) =
∑

(j,m)
bk−j,l/m(S/Mm) be the first structural decomposition 

of M . Suppose that M has characteristic Betti numbers, and each Mm has characteristic 
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Betti numbers in minimal homological degrees. Then M has characteristic Betti numbers 
in minimal homological degrees.

Proof. Let l be a monomial that is the common multidegree of an odd number of 
basis elements of TM . Let r be such that br,l(S/M) = 1. Then, there is a pair 
(j, m) ∈ C such that br−j,l/m(S/Mm) = 1. It follows that there is a basis ele-
ment [n′

a1
, . . . , n′

ar−j
] of TMm

with multidegree l/m. Recall that m is of the form 
m = lcm(mb1 , . . . , mbj ), with mb1 , . . . , mbj ∈ {m1, . . . , ms}. By Proposition 3.2, 

l = m
l

m
= m mdeg[n′

a1
, . . . , n′

ar−j
] = mdeg[mb1 , . . . , mbj , na1 , . . . , nar−j

]. Suppose 

that [σ] is a basis element of TM , such that mdeg[σ] = l. We will show that r ≤
hdeg[σ]. By [1, Lemma 4.3], [σ] must be of the form [σ] = [mb1 , . . . , mbj , nc1 , . . . , ncd ]. 
By Proposition 3.2, l = mdeg[σ] = m mdeg[n′

c1 . . . , n
′
cd

]. Thus, the basis element 
[n′

c1 , . . . , n
′
cd

] of TMm
has multidegree l/m. Since Mm has Betti numbers in min-

imal homological degrees, hdeg[n′
a1
, . . . , n′

ar−j
] ≤ hdeg[n′

c1 , . . . , n
′
cd

]. It follows that 
r = hdeg[mb1 , . . . , mbj , na1 , . . . , nar−j

] ≤ hdeg[mb1 , . . . , mbj , nc1 , . . . , ncd ] = hdeg[σ], 
which proves that M itself has characteristic Betti numbers in minimal homological 
degrees. �

Recall that a monomial ideal is called generic if no variable appears with the same 
nonzero exponent in the factorization of two minimal generators [2]. By slightly relaxing 
the defining condition of generic ideal, we next introduce the concept of almost generic 
ideal.

Definition 5.5. Suppose that the polynomial ring S has n variables x1, . . . , xn. We will 
say that M is almost generic, if there is an index i such that no variable among 
x1, . . . , xi−1, xi+1, . . . , xn appears with the same nonzero exponent in the factorization 
of two minimal generators of M .

Example 5.6. M = (a2b2cd2, a3b3c, cd4) is almost generic because no variable among 
a, b, d appears with the same nonzero exponent in the factorization of two minimal gen-
erators of M .

Lemma 5.7. Let bk,l(S/M) =
∑

(j,m)
bk−j,l/m(S/Mm) be the first structural decomposition 

of M . Suppose that M is almost generic. Then, each Mm is almost generic.

Proof. Let G be the minimal generating set of M . By definition, there is an index i
such that no variable among x1, . . . , xi−1, xi+1, . . . , xn appears with the same nonzero 
exponent in the factorization of two generators in G. Let G = {m1, . . . , ms, n1, . . . , nt}, 
where m1, . . . , ms are dominant, and n1, . . . , nt are nondominant. Then, each Mm in the 
first structural decomposition of M is of the form Mm = (n′

1, . . . , n
′
t). Suppose, by means 

of contradiction, that some Mm is not almost generic. Then, there is a variable x �= xi

that appears with the same nonzero exponent α in the factorization of two generators 
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n′
a, n

′
b ∈ {n′

1, . . . , n
′
t}. Recall that n′

a = lcm(m,na)
m

, n′
b = lcm(m,nb)

m
. Let u, v, w be 

the exponents with which x appears in the factorizations of m, na, nb, respectively. Note 
that x appears with exponents u + α and max(u, v) in the factorizations of mn′

a and 
lcm(m, na), respectively. Since mn′

a = lcm(m, na), we must have that u +α = max(u, v). 
It follows that v = u + α. Likewise, x appears with exponents u + α and max(u, w) in 
the factorizations of mn′

b and lcm(m, nb), respectively. Since mn′
b = lcm(m, nb), we must 

have that u + α = max(u, w). It follows that w = u + α. Combining these identities, 
we deduce that v = w, which implies that x appears with the same nonzero expo-
nent in the factorizations of na and nb, which contradicts the fact that M is almost 
generic. �
Lemma 5.8. If M is almost generic, its second structural decomposition has no purely 
nondominant part.

Proof. Let G be the minimal generating set of M . The proof is by induction on the 
cardinality of G.

If #G = 1 or #G = 2, then M is dominant and the theorem holds.
Suppose that the theorem holds whenever #G ≤ q − 1. Let us now assume that 

#G = q. Since M is almost generic, there is an index i such that no variable among 
x1, . . . , xi−1, xi+1, . . . , xn appears with the same nonzero exponent in the factorization of 
two generators in G. Let j �= i, and let k be the greatest exponent with which xj appears 
in the factorization of a generator in G. Then there is a unique element in G, divisible 
by xk

j , and such an element must be dominant (in xj). Hence, G can be represented in 
the form G = {m1, . . . , ms, n1, . . . , nt}, where m1, . . . , ms are dominant, n1, . . . , nt are 
nondominant, s + t = q, and s ≥ 1. In particular t ≤ q − 1. By Lemma 5.7, each Mm in 
the first structural decomposition of M is almost generic, and since Mm = (n′

1, . . . , n
′
t), 

Mm is minimally generated by at most q − 1 elements. Then, by induction hypothesis, 
the second structural decomposition of Mm has no purely nondominant part. Finally, 
the theorem follows from Lemma 5.2. �
Corollary 5.9. If M is almost generic, it has characteristic Betti numbers.

Proof. Immediate from Theorem 5.3 and Lemma 5.8. �
Theorem 5.10. If M is almost generic, it has characteristic Betti numbers in minimal 
homological degrees.

Proof. By induction on the cardinality of the minimal generating set G of M .
If #G = 1 or #G = 2, M is dominant, and the Theorem holds. Let us assume that 

the theorem holds whenever #G ≤ q − 1.
Suppose now that #G = q. By Lemma 5.8, M is not purely nondominant. Then, 

G can be represented in the form G = {m1, . . . , ms, n1, . . . , nt}, where m1, . . . , ms are 
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dominant, n1, . . . , nt are nondominant, s + t = q, and s ≥ 1. In particular, t ≤ q − 1. 
Let bk,l(S/M) =

∑
(j,m)

bk−j,l/m(S/Mm) be the first structural decomposition of M . 

Since Mm = (n′
1, . . . , n

′
t), Mm is minimally generated by at most q − 1 monomials. By 

Lemma 5.7, Mm is almost generic. By induction hypothesis, Mm has characteristic Betti 
numbers in minimal homological degrees. Now, the result follows from Lemma 5.4. �
Theorem 5.11. If M is 2-semidominant, it has characteristic Betti numbers in minimal 
homological degrees.

Proof. Let G = {m1, . . . , mq, n1, n2} be the minimal generating set of M , where n1, n2

are nondominant. Then, the first structural decomposition of M is

bk,l(S/M) =
∑
(j,m)

bk−j,l/m(S/Mm),

where Mm = (n′
1, n

′
2). If n′

1 = 1 or n′
2 = 1, then Mm = S, and bk−j,l/m(S/Mm) = 0. 

Otherwise, (n′
1, n

′
2) is minimally generated by either one or two monomials, which im-

plies that Mm is dominant. Note that the first and second structural decompositions 
agree, and have no purely nondominant part. By Theorem 5.3, M has characteristic 
Betti numbers. Moreover, since each Mm is dominant, it has characteristic in minimal 
homological degrees. Now, the result follows from Lemma 5.4. �
6. Structural decomposition and projective dimension

If the minimal generating set G of M has at least two monomials, and the ring S
has n variables, there are two natural bounds for the projective dimension pd (S/M), 
namely, 2 ≤ pd (S/M) ≤ n. In this section we discuss some cases where the lower and 
upper bounds are achieved.

Hilbert–Burch theorem [5, Theorem 20.15] describes the structure of the minimal 
resolutions of ideals M , when pd(S/M) = 2. The next theorem gives sufficient conditions 
for the lower bound pd(S/M) = 2 to be achieved.

Theorem 6.1. Let M be either 2- or 3-semidominant. Suppose that there exists a minimal 
generator of M that divides the lcm of every pair of minimal generators of M . Then 
pd(S/M) = 2.

Proof. Let G = {m1, . . . , ms, n1, . . . , nt} be the minimal generating set of M , where 
m1, . . . , ms are dominant, and n1, . . . , nt are nondominant. By hypothesis, there is an 
element n in G that divides the lcm of every pair of elements in G. However, since each 
mi is dominant, mi � lcm(n1, n2). It follows that n must be one of the n1, . . . , nt; say 
n = n1. Let bk,l(S/M) =

∑
bk−j,l/m(S/Mm) be the first structural decomposition 
(j,m)∈C
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of M . Let (j, m) ∈ C. We will prove that bk−j,l/m(S/Mm) = 0 for all k ≥ 3, and all 
monomials l.

First, let us assume that j ≥ 2. Then there are monomials mi1 , . . . , mij ∈ G such that 

m = lcm(mi1 , . . . , mij ), and Mm = (n′
1, . . . , n

′
t), where n′

i = lcm(m,ni)
m

. In particular, 
n1 | lcm(mi1 , mi2), and hence, n1 | m. This implies that lcm(m, n1) = m, and thus 

n′
1 = lcm(m,n1)

m
= 1. Therefore, Mm = S, and bk−j,l/m(S/Mm) = 0 for all k ≥ 3 and 

all monomials l.
Now, let us assume that j = 1. Then m = mi1 , and by hypothesis, n1 | lcm(mi1 , nk), 

for all k = 2, . . . , t. Then lcm(mi1 , n1) | (mi1 , nk), for all k = 2, . . . , t, and therefore, 
n′

1 | n′
k, for all k = 2, . . . , t. This means that Mm = (n′

1, . . . , n
′
t) = (n′

1), and thus, 
pd(S/Mm) ≤ 1. It follows that bk−j,l/m(S/Mm) = bk−1,l/m(S/Mm) = 0, for all k ≥ 3, 
and all monomials l. Finally, suppose that j = 0. Then m = 1, and Mm = (n′

1, . . . , n
′
t) =

(n1, . . . , nt). Since M is either 2-semidominant or 3-semidominant, t = 2 or t = 3. 
If t = 2, then Mm = (n1, n2), and thus bk−j,l/m(S/Mm) = bk,l(S/Mm) = 0, for all 
k ≥ 3, and all monomials l. On the other hand, if t = 3, since n1 | lcm(n2, n3), 
Mm = (n1, n2, n3) is not dominant, and we must have pd(S/Mm) ≤ 2. It follows 
that bk−j,l(S/Mm) = bk,l(S/Mm) = 0, for all k ≥ 3, and all monomials l. There-
fore, for all k ≥ 3, and all monomials l the first structural decomposition of M gives 
bk,l(S/M) =

∑
(j,m)∈C

bk−j,l/m(S/Mm) = 0, which means that pd(S/M) ≤ 2. However, 

since #G ≥ 2, we must have pd(S/M) = 2. �
Example 6.2. Let

m1 = a3c2d2e2f2g2 m2 = a2b3d2e2f2g2 m3 = a2b2c3e2f2g2

m4 = a2b2c2d3f2g2 m5 = a2b2c2de3g2 m6 = b2c2d2e2g3

n1 = abcdefg n2 = a2b2c2d2e2f n3 = a2b2c2d2ef2.

Let M = (m1, . . . , m6); M2 = (m1, . . . , m6, n1, n2); M3 = (m1, . . . , m6, n1, n2, n3). It 
is clear that M is dominant; M2 is 2-semidominant, and M3 is 3-semidominant. Note 
that n1 divides the lcm of every pair of monomials in {m1, . . . , m6, n1, n2, n3}. By Theo-
rem 6.1, pd(S/M) = 6; pd(S/M2) = pd(S/M3) = 2. (We see how adding a few monomials 
to the minimal generating set can change the projective dimension dramatically.)

The fact that Artinian monomial ideals have maximum projective dimension (in the 
sense of Hilbert Syzygy theorem) was proven by Charalambous [3] (see also [12, Corol-
lary 21.6]), using the radical of an ideal as main tool. Here we give an alternative proof 
of this fact that relies entirely on the first structural decomposition.

Theorem 6.3. If M is Artinian in S = k[x1, . . . , xn], then pd(S/M) = n.
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Proof. By induction on n. If n = 1, the result is trivial. Suppose that pd(S/M) = n − 1, 
for Artinian ideals M in n − 1 variables.

Let M be Artinian in S = k[x1, . . . , xn]. Then, for each i = 1, . . . , n, the minimal 
generating set G of M contains a monomial xαi

i , αi ≥ 1. Notice that each xαi
i is dom-

inant. Let bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm) be the third structural decomposition 

of M , where m1 = xα1
1 , and H = G \ {xα1

1 }. Since xα1
1 is dominant, (1, xα1

1 ) ∈ C. 
Thus, bk−1,l/xα1

1
(S/Mx

α1
1

) is one of the terms on the right side of the third structural 
decomposition.

Let G = {xα1
1 , . . . , xαn

n , l1, . . . , lq}. By construction,

Mx
α1
1

=
(

lcm(xα1
1 , xα2

2 )
xα1

1
, . . . ,

lcm(xα1
1 , xαn

n )
xα1

1
,
lcm(xα1

1 , l1)
xα1

1
, . . . ,

lcm(xα1
1 , lq)

xα1
1

)
= (xα2

2 , . . . , xαn
n , l′1, . . . , l

′
q).

Since xα1
1 is dominant, x1 does not appear in the factorization of l′i. Thus, Mx

α1
1

is 
an Artinian ideal in n − 1 variables. By induction hypothesis, pd(S/Mx

α1
1

) = n − 1. 
Therefore, there is a monomial l, such that bn−1,l(S/Mx

α1
1

) �= 0. Let l′ = lxα1
1 . Then, 

bn−1,l′/xα1
1

(S/Mx
α1
1

) �= 0. Finally,

bn,l′(S/M) =
∑

(j,m)∈C\{(1,xα1
1 )}

bk−j,l′/m(S/Mm) + bn−1,l′/xα1
1

(S/Mx
α1
1

) �= 0,

which implies that pd(S/M) = n. �
Theorem 6.4. Let M be Artinian in S = k[x1, . . . , xn]. Let FM be a minimal resolution 
of S/M , obtained from TM by means of consecutive cancellations. Then there is a basis 
element [σ] of FM , such that hdeg[σ] = n, and mdeg[σ] is divisible by each variable 
x1, . . . , xn.

Proof. By Theorem 6.3, there is a basis element [σ] in the basis of FM , such that 
hdeg[σ] = n.

By means of contradiction, suppose that the set {xj1 , . . . , xji} of all variables dividing 
mdeg[σ] is a proper subset of {x1, . . . , xn}; that is i ≤ n − 1.

Let m = mdeg[σ]; let G be the minimal generating set of M , and let Mm be the ideal 
generated by {l ∈ G : l | m}. By [8, Theorem 2.1], there is a subcomplex (FM )≤m of 
FM , such that [σ] is a basis element of (FM )≤m, and (FM )≤m is a minimal resolution of 
S/Mm. Therefore, pd(S/Mm) ≥ hdeg[σ] = n. However, since Mm is a monomial ideal 
in k[xj1 , . . . , xji ], it follows from Hilbert Syzygy theorem that pd(S/Mm) ≤ i ≤ n − 1, 
a contradiction.

We conclude that mdeg[σ] is divisible by x1, . . . , xn. �
Now we are ready to prove Charalambous theorem.
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Theorem 6.5. Let M be Artinian in S = k[x1, . . . , xn]. Then, for all i = 0, . . . , n, 
bi(S/M) ≥

(
n
i

)
.

Proof. Let 0 ≤ i ≤ n. Let Xi be the class of all subsets of {x1, . . . , xn}, of cardinality i. 
Then #Xi =

(
n
i

)
. Let {xj1 , . . . , xji} ∈ Xi. Since M is Artinian, its minimal generating set 

G contains generators of the form x
αj1
j1

, . . . , x
αji
ji

. Let m = lcm(xαj1
j1

, . . . , x
αji
ji

). Let Gm

be the set of all minimal generators of G dividing m, and let Mm be the ideal generated 
by Gm. Then Mm is Artinian in k[xj1 , . . . , xji ], and by Theorem 6.4, there is a basis 
element [σj1,...,ji ] of a minimal resolution (FM )≤m of S/Mm, such that hdeg[σj1,...,ji ] = i, 
and mdeg[σj1,...,ji ] is divisible by xj1 , . . . , xji . Since Mm is an ideal in k[xj1 , . . . , xji ], 
mdeg[σj1,...,ji ] is not divisible by any variable of {x1, . . . , xn} \ {xj1 , . . . , xji}. By [8, 
Theorem 2.1], (FM )≤m can be regarded as a subcomplex of a minimal resolution FM

of S/M . Therefore, [σj1,...,ji ] is a basis element of FM . Notice that if {xj1 , . . . , xji} and 
{xk1 , . . . , xki

} are different elements of Xi, the basis elements [σj1,...,ji ] and [σk1,...,ki
], 

determined by these sets must be different too. In fact, the sets of variables dividing 
mdeg[σj1,...,ji ] and mdeg[σk1,...,ki

] are {xj1 , . . . , xji} and {xk1 , . . . , xki
}, respectively. It 

follows that bi(S/M) ≥ #Xi =
(
n
i

)
. �

Theorem 6.6. Let M be an ideal in S = k[x1, . . . , xn], with minimal generating set G. 
Suppose that for all i = 1, . . . , n there are integers αi ≥ 0, βi ≥ 1, such that the set 
G′ = {xα1

1 xβ1
1 , xα2

1 xβ2
2 , . . . , xαn

1 xβn
n } is contained in G. Then pd(S/M) = n.

Proof. Let G = G′ ∪ {l1, . . . , lq}. Let bk,l(S/M) =
∑

(j,m)∈C

bk−j,l/m(S/Mm) be the first 

structural decomposition of M . Let γ = α1 + β1. Then xγ
1 = xα1

1 xβ1
1 is a minimal 

generator in G. Notice that the exponent γ with which x1 appears in the factorization 
of xγ

1 , must be larger than the exponent with which x1 appears in the factorization of 
any other minimal generator l in G; otherwise, l would be a multiple of xγ

1 . Hence, xγ
1

is dominant in G; which implies that (1, xγ
1) ∈ C. Thus, bk−1,l/xγ

1
(S/Mxγ

1
) is one of the 

terms on the right side of the first structural decomposition. Now,

Mxγ
1

=
(

lcm(xγ
1 , x

α2
1 xβ2

2 )
xγ

1
, . . . ,

lcm(xγ
1 , x

αn
1 xβn

n )
xγ

1
,
lcm(xγ

1 , l1)
xγ

1
, . . . ,

lcm(xγ
1 , lq)

xγ
1

)

= (xβ2
2 , . . . , xβn

n , l′1, . . . , l
′
q),

where l′i = lcm(xγ
1 , li)

xγ
1

.

Since xγ
1 is dominant, x1 does not appear in the factorization of l′i. Thus, Mxγ

1

is an Artinian monomial ideal in k[x2, . . . , xn]. It follows that pd(S/Mxγ
1
) = n − 1. 

Therefore, there is a monomial l, such that bn−1,l(S/Mxγ
1
) �= 0. Let l′ = lxγ

1 . Then, 
bn−1,l′/xγ (S/Mxγ ) �= 0. Finally,
1 1
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bn,l′(S/M) =
∑

(j,m)∈C\{(1,xγ
1 )}

bn−j,l′/m(S/Mm) + bn−1,l′/xγ
1
(S/Mxγ

1
) �= 0,

which implies that pd(S/M) = n. �
Example 6.7. Let M = (x3

1, x1x2, x1x3, x1x4, x1x5, x2x4, x3x5). Then, the subset G′ =
{x3

1, x1x2, x1x3, x1x4, x1x5} of the minimal generating set of M , satisfies the hypotheses 
of Theorem 6.6. Hence, pd(S/M) = 5.

The hypothesis of Theorem 6.6 is more common than it may seem. For instance, 
Artinian ideals satisfy this condition. The hypothesis of Theorem 6.6 is also satisfied if 
M is the smallest Borel ideal containing a monomial xα1

1 . . . xαn
n , with αn ≥ 1 (such an 

M is sometimes called principal Borel. A comprehensive study of principal Borel ideals 
can be found in [13]). Below we prove our last assertion.

A monomial m′ is said to be in the big shadow of a monomial m if m′ = xim

xj
, for 

some xj dividing m and some i < j.
M is a Borel ideal if and only if any of the two equivalent conditions hold:

(i) for every m ∈ M , M contains all monomials in the big shadow of m.
(ii) M contains all monomials in the big shadows of its minimal generators.

(See [12, Pages 109 and 110].)

Lemma 6.8. Let m = xα1
1 . . . xαn

n , with αn ≥ 1. Let M be the smallest monomial ideal 
containing m. Let G = {xβ1

1 . . . xβn
n :

n∑
i=1

βi =
n∑

i=1
αi, and 

n∑
i=k

βi ≤
n∑

i=k

αi, for all k =

2, . . . , n}.
Then for each m′ ∈ G, either m′ ∈ M or there exists m′′ ∈ G such that m′ is in the 

big shadow of m′′.

Proof. Let m′ = xβ1
1 . . . xβn

n ∈ G. Suppose that for all k, βk ≥ αk. If for one particular 
value of k we had that βk > αk, then 

n∑
i=k

βi >
n∑

i=k

αi, which contradicts the definition 

of G. It follows that β1 = α1, . . . , βn = αn, and thus, m′ = m ∈ M . Now suppose 
there is an index k such that βk < αk, and let r = max{k : βk < αk}. Then for all 
k = r + 1, . . . , n, βk ≥ αk and, since 

n∑
i=r+1

βi ≤
n∑

i=r+1
αi, we must have that βk = αk for 

all k = r + 1, . . . , n. Since 
n∑

i=1
βi =

n∑
i=1

αi, there must be an index 1 ≤ s < r, such that 

βs > αs; in particular, βs ≥ 1. Let m′′ = xγ1
1 . . . xγn

n , where γs = βs − 1, γr = βr + 1, 
and γk = βk, if k �= s, r. Then 

n∑
i=1

γi =
n∑

i=1
βi =

n∑
i=1

αi; also, for all k = 2, . . . , s, and all 

k = r+1, . . . , n, 
n∑

γi =
n∑

βi ≤
n∑

αi; and for all k = s +1, . . . , r, 
n∑

γi < 1 +
n∑

γi =

i=k i=k i=k i=k i=k
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n∑
i=k

βi ≤
n∑

i=k

αi. Therefore, m′′ ∈ G. Moreover, m′ = xsm
′′

xr
, which implies that m′ is in 

the big shadow of m′′. �
Theorem 6.9. Let m = xα1

1 . . . xαn
n , with αn ≥ 1. Let M be the smallest monomial ideal 

containing m. Then the minimal generating set of M is G = {xβ1
1 . . . xβn

n :
n∑

i=1
βi =

n∑
i=1

αi, 

and 
n∑

i=k

βi ≤
n∑

i=k

αi, for all k = 2, . . . , n}.

Proof. First, we will prove that G ⊆ M . Let m1 ∈ G. Suppose, by means of contradiction, 
that m1 /∈ M . By Lemma 6.8, there exists m2 ∈ G, such that m1 is in the big shadow 
of m2. If m2 were an element of M , m1 would also be in M , since M is Borel. It follows 
that m1, m2 ∈ S \M . Suppose that m1, . . . , mk are monomials of S \M such that, for 
all i = 1, . . . , k−1, mi is in the big shadow of mi+1. By Lemma 6.8, there is a monomial 
mk+1 ∈ G such that mk is in the big shadow of mk+1. If mk+1 were an element of 
M , then mk would also be in M , since M is Borel. Hence, mk+1 ∈ S \ M . Thus, by 
recurrence, we can construct an infinite sequence m1, m2, . . . , mk, . . . of elements of G, 
such that each mi is in the big shadow of mi+1, and each mi is in S \ M . But this is 
not possible as G is a finite set; a contradiction. We conclude that m1 ∈ M , and then 
G ⊆ M . Moreover, < G >⊆ M .

Let us now show that < G >= M . Let m′′ = xβ1
1 . . . xβn

n be an element of G. Suppose 
that a monomial m′ is in the big shadow of m′′. That is there is a variable xr dividing 

m′′, and s < r, such that m′ = xsm
′′

xr
. Therefore, m′ is of the form m′ = xγ1

1 . . . xγn
n , 

where γs = βs + 1, γr = βr − 1, and γk = βk, if k �= s, r. It easy to check (and analogous 
to what we did in the proof of Lemma 6.8) that m′ ∈ G. Therefore, the ideal < G >
contains all monomials in the big shadow of its generators. It follows that G is Borel. 
Moreover, since m ∈ G, and < G >⊆ M , < G >= M . �
Corollary 6.10. Let m = xα1

1 . . . xαn
n , with αn ≥ 1. Let M =< G > be the smallest Borel 

ideal containing m. Let α = α1 + . . .+ αn. Then the minimal generating set G contains 
the subset G′ = {xα−1

1 xi : i = 1, . . . , n}.

Proof. Let m′ = xβ1
1 . . . xβn

n , where β1 = α− 1, βr = 1, and βi = 0 for all i �= 1, r. Then 
n∑

i=1
βi = α =

n∑
i=1

αi. On the other hand, if 2 ≤ k ≤ n, then 
n∑

i=k

βi ≤ 1 ≤
n∑

i=k

αi. Therefore, 

m′ = xα−1
1 xr ∈ G. �

7. Structural decomposition in context

In this section we set the structural decomposition in context by explaining how it re-
lates to some of the important concepts in the field. Specifically, we describe connections 
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to the lcm-lattice [9], and to two combinatorially defined classes of ideals: rigid ideals 
[4], and homologically monotonic ideals [7].

For the sake of clarity we reintroduce the notation adopted in Sections 3 and 4. 
Let M be a monomial ideal with minimal generating set G = {m1, . . . , mq, n1, . . . , np}, 
where q ≥ 1, p ≥ 0, m1, . . . , mq are dominant, and n1, . . . , np are nondominant. Let 
1 ≤ d ≤ q, and let H = {md+1, . . . , mq, n1, . . . , np}. Then G can be expressed in the 
form G = {m1, . . . , md, h1, . . . , hc}, where H = {h1, . . . , hc}. Let C = {(j, m) ∈ Z+ × S: 
there are integers 1 ≤ r1 < . . . < rj ≤ d, such that m = lcm(mr1 , . . . , mrj )} ∪ {(0, 1)}. 

For each (j, m) ∈ C, let Mm = (h′
1, . . . , h

′
c), where h′

i = lcm(m,hi)
m

.

Theorem 7.1. For every (j, m) ∈ C, let Λ and Γm be the lcm-lattices of M and Mm, 
respectively, and let Λm = {w ∈ Λ: for each i = 1, . . . , d, mi | w if and only if mi | m}. 
Then,

(i) Each Λm is a sublattice of Λ.
(ii) The application

ρ : Γm → Λm

w → mw

is an injection that preserves lcm and gcd; that is, ρ(lcm(w, w′)) = lcm(ρ(w), ρ(w′)), 
and ρ(gcd(w, w′)) = gcd(ρ(w), ρ(w′)).

(iii) Λ is the disjoint union of all the Λm; that is, Λ =
⋃

(j,m)∈C

Λm, and Λm ∩ Λm′ = ∅

if (j, m) �= (i, m′).

Proof. (i) If (j, m) = (0, 1), then Λm = Λ1 = {lcm(A) : A ⊆ {h1, . . . , hc}}; that is, Λm

is the lcm-lattice of (h1, . . . , hc), which is a sub-lattice of Λ.
Suppose now that (j, m) �= (0, 1). Then there are integers 1 ≤ r1 < . . . < rj ≤ d, 

such that m = lcm(mr1 , . . . , mrj ). Let 1 ≤ i ≤ d. Since mi is dominant (in G), mi | m
if and only if mi ∈ {mr1 , . . . , mrj}. Let w, w′ ∈ Λm ⊆ Λ. Since Λ is the lcm-lattice of 
M , w, w′ have a unique join and a unique meet in Λ; namely, lcm(w, w′) and gcd(w, w′), 
respectively. We will show that lcm(w, w′), gcd(w, w′) ∈ Λm. Let mk ∈ {m1, . . . , md} \
{mr1 , . . . , mrj}. Since mk is dominant in G, there is a variable x, such that the exponent 
α with which x appears in the factorization of mk is larger than the exponent with which 
x appears in the factorization of each monomial of G \ {mk}. Hence, the exponents with 
which x appears in the factorizations of w and w′ are strictly less than α. It follows that 
neither lcm(w, w′) nor gcd(w, w′) is divisible by mk. On the other hand, since both w and 
w′ are divisible by each of mr1 , . . . , mrj , it follows that both lcm(w, w′) and gcd(w, w′)
are divisible by each of mr1 , . . . , mrj . Hence, lcm(w, w′), gcd(w, w′) ∈ Λm.

(ii) Let w, w′ be elements of Γm. Then there are sequences 1 ≤ s1 < . . . < su ≤ c, 
and 1 ≤ t1 < . . . < tv ≤ c, such that w = lcm(h′

s , . . . , h′
s ), and w′ = lcm(h′

t , . . . , h′
t ). 
1 u 1 v
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By Proposition 3.2, w = lcm(h′
s1 , . . . , h

′
su) = 1

m
lcm(mr1 , . . . , mrj , hs1 , . . . , hsu), and 

w′ = lcm(h′
t1 , . . . , h

′
tv) =

1
m

lcm(mr1 , . . . , mrj , ht1 , . . . , htv ). Therefore,

ρ(lcm(w,w′)) =

= m lcm(w,w′)

= m lcm
(

1
m

lcm(mr1 , . . . ,mrj , hs1 , . . . , hsu), 1
m

lcm(mr1 , . . . ,mrj , ht1 , . . . , htv )
)

= lcm
(
lcm(mr1 , . . . ,mrj , hs1 , . . . , hsu), lcm(mr1 , . . . ,mrj , ht1 , . . . , htv )

)
= lcm(mw,mw′)

= lcm (ρ(w), ρ(w′)) .

Also, ρ(gcd(w, w′)) = m gcd(w, w′) = m
ww′

lcm(w,w′) = mwmw′

m lcm(w,w′) = ρ(w)ρ(w′)
ρ(lcm(w,w′)) =

ρ(w)ρ(w′)
lcm(ρ(w), ρ(w′)) = gcd(ρ(w), ρ(w′)).

In addition, if w �= w′, then ρ(w) = mw �= mw′ = ρ(w′).
(iii) Let (j, m) �= (i, m′). Then there are sequences 1 ≤ r1 < . . . < rj ≤ d and 

1 ≤ s1 < . . . < si ≤ d, such that m = lcm(mr1 , . . . , mrj ) and m′ = lcm(ms1 , . . . , msi). 
Suppose that m = m′. Then each msk divides lcm(mr1 , . . . , mrj ) and, since msk

is dominant, we must have that msk ∈ {mr1 , . . . , mrj}. Likewise, we can conclude 
that mrk ∈ {ms1 , . . . , msi}. Hence, {mr1 , . . . , mrj} = {ms1 , . . . , msi}, and i = j. 
In other words, if m = m′, then (j, m) = (i, m′). Since we are under the assump-
tion that (j, m) �= (i, m′), it follows that m �= m′. Then, m and m′ must be of the 
form m = lcm(mr1 , . . . , mrj ); m′ = lcm(ms1 , . . . , msi), where one of {mr1 , . . . , mrj}, 
{ms1 , . . . , msi} is not contained in the other. Without loss of generality, we may assume 
that there is mr ∈ {mr1 , . . . , mrj}, such that mr /∈ {ms1 , . . . , msi}. Let w ∈ Λm. By 
definition of Λm, mr | w. By definition of Λm′ , no element of Λm′ is divisible by mr. 
It follows that w ∈ Λm \ Λm′ . We have shown that the sublattices Λm of Λ are dis-
joint. Finally, if w ∈ Λ, then w is of the form w = lcm(ma1 , . . . , mau

, hb1 , . . . , hbv ). Let 
ma = lcm(ma1 , . . . , mau

). Then (u, ma) ∈ C, and w ∈ Λma
. Thus, Λ =

⋃
(j,m)∈C

Λm. �

According to Theorem 4.1, the Betti numbers of S/M can be computed in terms of 
the Betti numbers of the ideals Mm. Since the lcm-lattices Γm of the ideals Mm can be 
embedded in the sublattices Λm of Λ (that is Γm

∼= ρ(Γm) ⊆ Λm), and given that the 
Λm are disjoint, it follows from Theorem 7.1 that in order to compute the Betti numbers 
of S/M we can use the collection of disjoint sublattices ρ(Γm) of Λ.

In the particular case when the structural decomposition gives the Betti numbers of 
S/M in terms of the Betti numbers of dominant ideals, the lcm-lattice can be used as a 
practical tool to simplify computations. We illustrate this point in the next example.
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Fig. 1. The lcm-lattices Γ1 and Γa2bc.

Example 7.2. Let M = (a2bc, ad, be, cde). Let us compute the first structural decom-
position of M . Note that a2bc is the only dominant generator of M . Thus, C =
{(0, 1), (1, a2bc)}. The pair (0, 1) determines the ideal M1 = (ad, be, cde). The pair 
(1, a2bc) determines the ideal Ma2bc = (d, e, de) = (d, e). Hence, the first structural 
decomposition of M is

bk,l(S/M) = bk−0, l
1
(S/M1) + bk−1, l

a2bc
(S/Ma2bc)

Since the ideals M1 and Ma2bc are dominant, the computations are easy. However, 
there is an even easier and faster way to compute the bk,l(S/M). Since M1 and Ma2bc are 
dominant, their lcm-lattices Γ1, Γa2bc (described in Fig. 1), are Boolean. Thus, the labels 
of Γ1 and Γa2bc are the multidegrees of the basis elements of M1 and Ma2bc, respectively.

For instance, the label d of Γa2bc is an atom. Thus, there must be an element [τ ] in 
the basis of the minimal resolution of S/Ma2bc such that hdeg[τ ] = 1, and mdeg[τ ] = d. 
According to the first structural decomposition of M , there is an element [σ] in the basis 
of the minimal resolution of S/M such that hdeg[σ] = 1 +1 and mdeg[σ] = a2bcd. (Notice 
that the components of (1, a2bcd) indicate a shift in homological degree and multidegree, 
respectively.)

Once we understand this reasoning, we can compute the bk,l(S/M) very quickly, as 
follows. The labels 1, d, e, de of Γa2bc determine the following multigraded Betti numbers:

b1,a2bc(S/M) = b2,a2bcd(S/M) = b2,a2bce(S/M) = b3,a2bcde(S/M) = 1.

The labels 1, ad, be, cde, abde, bcde, abcde of Γ1 determine the following multigraded 
Betti numbers:

b0,1(S/M) = b1,ad(S/M) = b1,be(S/M) = b1,cde(S/M) = b2,abde(S/M)

= b2,bcde(S/M) = b2,acde(S/M) = b3,abcde(S/M) = 1.

We leave the details to the reader.
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We now turn our attention to monomial ideals with characteristic Betti numbers, a 
class that originated in our study of the structural decomposition.

Proposition 7.3. M has characteristic Betti numbers if and only if for each multidegree m, ∑
i

bi,m(S/M) is either 0 or 1.

Proof. Recall that the minimal resolution of S/M can be obtained from TM by doing 
consecutive cancellations. Since each consecutive cancellation eliminates a pair of basis 
elements of equal multidegree, the number of basis elements of a given multidegree 
m in the new resolution will either be the same as the number of basis elements of 
multidegree m in the preceding resolution, or it will decrease by 2. In either case, we 
observe that the parity of the number of basis elements of multidegree m does not change 
by doing consecutive cancellations. In other words, if the number of basis elements of 
TM of multidegree m is even (respectively, odd), then the number of basis elements of 
multidegree m of the minimal resolution of S/M is also even (respectively, odd).

Suppose that 
∑
i

bi,m(S/M) is either 0 or 1 for each multidegree m. Then, in light of 

the previous observation, when the number of basis elements of multidegree m in TM

is even (respectively, odd), 
∑
i

bi,m(S/M) = 0 (respectively, 
∑
i

bi,m(S/M) = 1). That is, 

M has characteristic Betti numbers. The converse is obvious. �
The following class of ideals was studied in [4].

Definition 7.4. A monomial ideal M is called rigid if it satisfies the following two prop-
erties:

(1) bi,m(S/M) is either 0 or 1 for all i and all multidegrees m.
(2) If m �= m′, and bi,m(S/M) = 1 = bi,m′(S/M), then m � m′ and m′ � m.

Proposition 7.5. If M is rigid then M has characteristic Betti numbers.

Proof. Let M be rigid. Suppose that there is a monomial m, and integers i < j, such 
that bi,m(S/M) = 1 = bj,m(S/M). Choose a basis element of the minimal resolution 
of S/M with homological degree j and multidegree m, and apply the differential map. 
The result is an S-linear combination of basis elements in homological degree j − 1, 
each with multidegree strictly dividing m. Pick one such basis element and repeat. After 
(j− i) steps we will have found a basis element in homological degree i with multidegree 
m′ strictly dividing m. Thus, m′ �= m, m′ | m, and bi,m′(S/M) = 1 = bi,m(S/M); 
a contradiction. We have proven that two basis elements of the minimal resolution of S/M
in different homological degrees must have different multidegrees. Combining this with 
the fact that each bi,m(S/M) is either 0 or 1, yields the following: for each multidegree m, ∑

bi,m(S/M) is either 0 or 1. The result now follows from Proposition 7.3. �

i
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We are interested in one last family of ideals which extends the class of rigid ideals. 
The following concept was first introduced (with more generality) in [7].

Definition 7.6. We say that M is homologically monotonic (HM) if it satisfies the fol-
lowing: for every i and every pair m �= m′ such that m | m′, either bi,m(S/M) = 0 or 
bi,m′(S/M) = 0.

The classes of Scarf, rigid, and HM ideals are related as follows: Scarf � Rigid �
HM [7, Section 4]. Proposition 7.5, combined with the fact that M1 in Example 7.7 has 
characteristic Betti numbers but is not rigid, tells us that Scarf � Rigid � Characteristic 
Betti Numbers.

The next example shows that the classes HM and Characteristic Betti numbers are 
incomparable.

Example 7.7. Let M1 = (a2b2, a2c, bc). Then M1 has characteristic Betti numbers, but 
M1 is not HM because a2bc strictly divides a2b2c, and b2,a2bc = 1 = b2,a2b2c.

On the other hand, M2 = (ab, ac, bc) is HM but does not have characteristic Betti 
numbers, for b2,abc = 2

8. Conclusion

We close this article with some remarks, questions, and conjectures.
The structural decomposition is one of the very few techniques that allow us to com-

pute Betti numbers by hand, not for arbitrary monomial ideals, but for a wide class 
of them. As a matter of fact, the ideal M in Example 4.6, is minimally generated by 
7 monomials and even so we were able to compute the numbers bk,l(S/M). (Starting 
with TM , we could also calculate the bk,l(S/M) by means of consecutive cancellations. 
But since the basis of TM contains 

∑(7
i

)
= 128 elements, and the basis of the minimal 

resolution of S/M contains 20 elements, we should make 
128 − 20

2 = 54 consecutive 

cancellations, which obviously requires the use of software.)
On a different note, the structural decomposition of an ideal M generates a finite 

family {Mm} of ideals that usually has these two properties: a) the minimal generating 
set of each Mm has smaller cardinality than the minimal generating set of M ; b) if M is 
an ideal in S = k[x1, . . . , xn], then Mm is an ideal in a polynomial ring with less than n
variables. As a consequence, the structural decomposition works well when one wants to 
prove facts by induction. Theorems 5.3 and 5.10, for instance, are proven by induction 
on the cardinality of the minimal generating set. On the other hand, Theorem 6.3 is 
proven by induction on the number of variables.

We close this article with some conjectures.

Conjecture 8.1. Suppose that for some ideal M , there are indices i < j such that no 
variable among x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn appears with the same nonzero 
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exponent in the factorization of two minimal generators. Then M has characteristic Betti 
numbers.

The definition of purely nondominant ideal involves many overlaps. By this we mean 
that it is common to find that one variable appears with the same nonzero exponent 
in the factorization of two minimal generators. On the other hand, the hypothesis of 
Conjecture 8.1 prevents overlaps (unless the variables are xi or xj). Thus, following our 
intuition, we suggest that the second structural decomposition of an ideal M satisfying 
the hypothesis of Conjecture 8.1 will have no purely nondominant part. If this is true, 
then Conjecture 8.1 will follow from Theorem 5.3.

Conjecture 8.2. Let M be minimally generated by {m1, . . . , mq, n1, . . . , np}, where the 
mi are dominant and the ni are nondominant. If the ideal M ′ = (n1, . . . , np) is almost 
generic, then M has characteristic Betti numbers in minimal homological degrees.

Conjecture 8.3. If M is minimally generated by more than one monomial, and there is a 
minimal generator that divides the lcm of every pair of generators, then pd(S/M) = 2.

Conjectures 8.2 and 8.3 were inspired by Theorems 5.3 and 6.1, respectively, and were 
verified for many examples run in Macaulay2 [10].
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