INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES | 卷:49 |
Mechanics of stretchable electronics with high fill factors | |
Article | |
Su, Yewang1,2,3  Liu, Zhuangjian4  Kim, Seok5  Wu, Jian3,6  Huang, Yonggang1,2  Rogers, John A.5,7,8,9,10,11  | |
[1] Northwestern Univ, Dept Civil Environ Engn, Evanston, IL 60208 USA | |
[2] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA | |
[3] Tsinghua Univ, Ctr Mech & Mat, Beijing 100084, Peoples R China | |
[4] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore | |
[5] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA | |
[6] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China | |
[7] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA | |
[8] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA | |
[9] Univ Illinois, Dept Chem, Urbana, IL 61801 USA | |
[10] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA | |
[11] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA | |
关键词: Self collapse; Stretchable electronics; Transfer printing; Biomimetics; Stretchability and bendability; | |
DOI : 10.1016/j.ijsolstr.2012.07.024 | |
来源: Elsevier | |
【 摘 要 】
Mechanics models are developed for an imbricate scale design for stretchable and flexible electronics to achieve both mechanical stretchability and high fill factors (e.g., full, 100% areal coverage). The critical conditions for self collapse of scales and scale contact give analytically the maximum and minimum widths of scales, which are important to the scale design. The maximum strain in scales is obtained analytically, and has a simple upper bound of 3t(scale)/(4 rho) in terms of the scale thickness t(scale) and bending radius rho. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_ijsolstr_2012_07_024.pdf | 1106KB | download |