期刊论文详细信息
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 卷:50
Discretized virtual internal bond model for nonlinear elasticity
Article
Zhang, Zhennan
关键词: Discretized virtual internal bond;    Unit cell;    Discrete system;    Continuum;    Fracture simulation;   
DOI  :  10.1016/j.ijsolstr.2013.07.003
来源: Elsevier
PDF
【 摘 要 】

The virtual internal bond (VIB) is a micro-macro constitutive model. Although this model is based on a postulated discrete microstructure, it ultimately returns to a continuum constitutive relation through a homogenization process. The homogenization process can reduce the internal degrees of freedom, but it omits the effect of the individual micro bond that may play an important role in the fracture process. The present research develops a discrete system to represent the nonlinear elasticity by discretizing the continuous VIB. This discrete system is composed of unit cells, which can adopt any geometry with any number of bonds. The system is characterized by the force-displacement, not the stress-strain constitutive relationship. The nonlinear properties of this discrete system are governed by the micro-bond potential. The micro bond properties are related to Young's modulus of the material, the volume and the bond number of the unit cell. For a given material, the unit cell has a certain topological structure and configuration. A discussion of two specific cases (the 2D triangular and 3D tetrahedral unit cells) suggests that the discrete system converges with decreasing unit cell size. In the unstructured unit cell scheme, the discrete system can almost precisely represent the initial Young's modulus and the Poisson ratio of a nonlinear continuum. A mixed fracture example demonstrates that the present method can efficiently simulate the fracture propagation. The present paper provides a theory for developing a lattice-type mechanical model for nonlinear elasticity and provides new method for the fracture simulation of a nonlinear elastic material. (C) 2013 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_ijsolstr_2013_07_003.pdf 2455KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次