JOURNAL OF CONTROLLED RELEASE | 卷:191 |
An amphipathic alpha-helical peptide from apolipoprotein A1 stabilizes protein polymer vesicles | |
Article; Proceedings Paper | |
Pastuszk, Martha K.1  Wang, Xiangdong2,3  Lock, Lye Lin4  Janib, Siti Mohd1  Cui, Honggang4  DeLeve, Laurie D.2,3  MacKay, J. Andrew1,5  | |
[1] Univ So Calif, Dept Pharmacol & Pharmaceut Sci, Los Angeles, CA 90033 USA | |
[2] Univ So Calif, Keck Sch Med, Res Ctr Liver Dis, Los Angeles, CA 90033 USA | |
[3] Univ So Calif, Keck Sch Med, Div Gastrointestinal & Liver Dis, Los Angeles, CA 90033 USA | |
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA | |
[5] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA | |
关键词: Nanoparticle; Elastin-like polypeptide; L-4F; Hydrodynamic radius; Cryo-TEM; Vesicle; | |
DOI : 10.1016/j.jconrel.2014.07.003 | |
来源: Elsevier | |
【 摘 要 】
L4F, an alpha helical peptide inspired by the lipid-binding domain of the ApoA1 protein, has potential applications in the reduction of inflammation involved with cardiovascular disease as well as an antioxidant effect that inhibits liver fibrosis. In addition to its biological activity, amphipathic peptides such as L4F are likely candidates to direct the molecular assembly of peptide nanostructures. Here we describe the stabilization of the amphipathic L4F peptide through fusion to a high molecular weight protein polymer. Comprised of multiple pentameric repeats, elastin-like polypeptides (ELPs) are biodegradable protein polymers inspired from the human gene for tropoelastin. Dynamic light scattering confirmed that the fusion peptide forms nanoparticles with a hydrodynamic radius of approximately 50 nm, which is unexpectedly above that observed for the free ELP (similar to 5.1 nm). To further investigate their morphology, conventional and cryogenic transmission electron microscopy were used to reveal that they are unilamellar vesicles. On average, these vesicles are 49 nm in radius with lamellae 8 nm in thickness. To evaluate their therapeutic potential, the L4F nanoparticles were incubated with hepatic stellate cells. Stellate cell activation leads to hepatic fibrosis; furthermore, their activation is suppressed by anti-oxidant activity of ApoA1 mimetic peptides. Consistent with this observation, L4F nanoparticles were found to suppress hepatic stellate cell activation in vitro. To evaluate the in vivo potential for these nanostructures, their plasma pharmacokinetics were evaluated in rats. Despite the assembly of nanostructures, both free L4F and L4F nanoparticles exhibited similar half-lives of approximately 1 h in plasma. This is the first study reporting the stabilization of peptide-based vesicles using ApoA1 mimetic peptides fused to a protein polymer; furthermore, this platform for peptide-vesicle assembly may have utility in the design of biodegradable nanostructures. (C) 2014 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jconrel_2014_07_003.pdf | 1487KB | download |