期刊论文详细信息
JOURNAL OF CONTROLLED RELEASE 卷:155
Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system
Article
Wu, Sherry Y.1  Chang, Hsin-I2  Burgess, Melinda1  McMillan, Nigel A. J.1 
[1] Univ Queensland, Princess Alexandra Hosp, Diamantina Inst, Buranda, Qld 4102, Australia
[2] Natl Chiayi Univ, Dept Biochem Sci & Technol, Chia Yi City 60004, Taiwan
关键词: Vaginal delivery;    Gene;    Liposomes;    Alginate;    Scaffold;   
DOI  :  10.1016/j.jconrel.2011.02.002
来源: Elsevier
PDF
【 摘 要 】

Sustained vaginal delivery of siRNA has been precluded by the mucosal barrier lining the vaginal tract. In contrast to prior reports, we showed that conventional lipoplexes administered intravaginally are unable to reach the vaginal epithelium under normal physiological conditions. Here we have developed a novel alginate scaffold system containing muco-inert PEGylated lipoplexes to provide a sustained vaginal presence of lipoplexes in vivo and to facilitate the delivery of siRNA/oligonucleotides into the vaginal epithelium. These PEGylated lipoplex-entrapped alginate scaffolds (PLAS) were fabricated using a freeze-drying method and the entrapment efficiency, release rate, and efficacy were characterized. We demonstrated that the PLAS system had an entrapment efficiency of similar to 50%, which released PEGylated lipoplexes gradually both in vitro and in vivo. While the presence of alginate diminished the cell uptake efficiency of PEGylated lipoplexes in vitro, as expected, we showed a six-fold increase their uptake into the vaginal epithelium compared to existing transfection systems following intravaginal administration in mice. A significant knockdown of Lamin A/C level was also observed in vaginal tissues using siLamin A/C-containing PLAS system in vivo. Overall, our results indicated the potential of the biodegradable PLAS system for the sustained delivery of siRNA/oligonucleotides to vaginal epithelium. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jconrel_2011_02_002.pdf 1150KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次