期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:252
Non-symbolic algorithms for the inversion of tridiagonal matrices
Article
Abderraman Marrero, J.1  Rachidi, M.2  Tomeo, V.3 
[1] Tech Univ Madrid, ETSIT UPM Telecommun Engn Sch, Dept Math Appl Informat Technol, Madrid 28040, Spain
[2] Univ Moulay Ismail, Fac Sci, Dept Math & Informat, Grp DEFA, Beni Mhamed, Meknes, Morocco
[3] Univ Complutense, EUE UCM Sch Stat, Dept Algebra, E-28040 Madrid, Spain
关键词: Computational complexity;    Difference equation;    Inverse matrix;    Numerical algorithm;    Tridiagonal matrix;   
DOI  :  10.1016/j.cam.2012.05.003
来源: Elsevier
PDF
【 摘 要 】

A representation for the entries of the inverse of general tridiagonal matrices is based on the determinants of their principal submatrices. It enables us to introduce, through the linear recurrence relations satisfied by such determinants, a simple algorithm for the entries of the inverse of any tridiagonal nonsingular matrix, reduced as well as unreduced. The numerical approach is preserved here, without invoking the symbolic computation. For tridiagonal diagonally dominant matrices, a scaling transformation on the recurrences allows us to give another algorithm to avoid overflow and underflow. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_05_003.pdf 492KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次