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a b s t r a c t

A representation for the entries of the inverse of general tridiagonal matrices is based
on the determinants of their principal submatrices. It enables us to introduce, through
the linear recurrence relations satisfied by such determinants, a simple algorithm for the
entries of the inverse of any tridiagonal nonsingular matrix, reduced as well as unreduced.
The numerical approach is preserved here, without invoking the symbolic computation.
For tridiagonal diagonally dominant matrices, a scaling transformation on the recurrences
allows us to give another algorithm to avoid overflow and underflow.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let T = {ai, bi, ci} (1 ≤ i ≤ n) be an n × n tridiagonal nonsingular matrix, with a1 = cn = 0, where the {bi} are the
coefficients of theprincipal diagonal and the {ai}, {ci} are those of the lower andupper subdiagonals, respectively. Algorithms
for the inversion of such matrices are frequently used. There are efficient packages for the numerical inversion of matrices
based on Gaussian algorithms, with pivoting strategies, and for solving linear systems by using the Neville elimination,
see e.g. [1]. But they require a great amount of memory and greater run times than other specific algorithms. Concerning
the abundant literature about such simpler algorithms for the inversion of tridiagonal matrices, we can refer to [2–4],
for example. In general, these specialized algorithms are applicable only in the case of tridiagonal unreduced matrices.
Frequently, reduced matrices have been avoided because if an entry on the subdiagonals is null, then the routine can be
applied in separate blocks. Indeed, just consider a scenario of tridiagonal strongly reduced matrices, which have numerous
null entries in the subdiagonals. Therefore, complexity of such a method of inversion becomes significant. Numerical
techniques have also been applied on linear systems with block tridiagonal matrices, see e.g. [5,6].

A first complete analysis on the inversion of tridiagonal nonsingular matrices, without imposing any condition on the
coefficients, was introduced in [7]. Nevertheless, the resulting numerical algorithm breaks down when any (left or right)
principal submatrix is singular. The symbolic computation recently established in this subject, see e.g. [8,9], overcomes
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difficulties by considering symbolic parameters, which are adequately replaced in a posterior step of the algorithm. The
computational complexity of the algorithms given in [7–9] is O(n2).

In the applied domain, the numerical approach is currently more spread out and usable than the symbolic one. Thus
we try to go on with the numerical line from [7], by introducing a simple algorithm to obtain the entries of the inverse of
any tridiagonal nonsingular matrix. There are some compact representations for the entries of the inverse of tridiagonal
nonsingular matrices, special as well as general, see e.g. [10,11]. We propose a numerical algorithm by taking advantage of
the representation based on the determinants of proper principal submatrices, see e.g. [9],

(T−1)ij =


(−1)i+j


i

k=j+1

ak


det Tj−1 · det T (i)

n−i

det T
if i > j,

(−1)i+j


j−1
k=i

ck


det Ti−1 · det T (j)

n−j

det T
if i ≤ j.

(1)

The submatrix Ti−1 is the left principal one of order i − 1. The submatrix T (j)
n−j is the right principal one of order n − j, which

begins in the (j + 1)-th row and column and finishes in the n-th row and column. We define here det T0 = det T (n)
0 = 1.

Representation (1) for the entries of the inverse of tridiagonal nonsingular matrices is a particular case of the closed
representation for inverses of nonsingular Hessenberg matrices, see e.g. [12]. We can also obtain Expression (1) by using
the companion decomposition, recently introduced in [13], on any tridiagonal nonsingular matrix T .

If in addition T is a symmetric matrix, then its inverse matrix is also a symmetric one, and its entries have the simpler
representation,

(T−1)ij = (T−1)ji = (−1)M+m


M

k=m+1

ak


det Tm−1 · det T (M)

n−M

det T
, (2)

withM = max{i, j},m = min{i, j}.
The complexity for the inversion of tridiagonal nonsingular matrices is related to the obtainment of the determinants

of all their principal submatrices. For a fast computation we have at our disposal the second order linear difference
equations satisfied by such determinants; see also [14]. The linear recurrence relation for determinants of the left principal
submatrices, with initial conditions det T1 = b1, det T2 = b2b1 − a2c1, is

det Tk+2 = bk+2 det Tk+1 − ak+2ck+1 det Tk, (1 ≤ k ≤ n − 2) . (3)

For determinants of the right principal submatrices, the recurrence relation for 1 ≤ k ≤ n − 2, with initial conditions
det T (n−1)

1 = bn, det T
(n−2)
2 = bn−1bn − cn−1an, is

det T (n−k−2)
k+2 = bn−k−1 det T

(n−k−1)
k+1 − cn−k−1an−k det T

(n−k)
k . (4)

Just consider as we can directly obtain a particular entry of the inverse with O(n) complexity. Although, overflow or
underflow can appear in further computation of such recurrences. Thus, our algorithm works for values of the recurrences
into the usage range. For example, in somediagonally dominantmatrices, i.e. |bi| ≥ |ai|+|ci|, the solutions of the recurrences
grow (or reduce) quickly in magnitude. Therefore other methods should be introduced, such as scaling transformations on
the recurrences. We handle these difficulties by considering another algorithm.

The material of this paper is organized as follows. In Section 2, after analyzing difficulties of some current specialized
numerical algorithms for the inversion of tridiagonal matrices, [7,9], we point out the features of the algorithm detailed in
Appendix A. This algorithm permits us to compute the inverse of any tridiagonal nonsingular matrix of finite order. As an
illustration, graphical comparisons of its run times with respect to the built-in function inv() of the Matlab R⃝ package are
given in Fig. 1. In Section 2.2 we check the algorithm of Appendix A on some current examples of tridiagonal matrices. As it
was pointed out previously, somedifficulties related to overflowandunderflowappear in the inversion of various tridiagonal
diagonally dominant matrices. We manage these difficulties by introducing in Section 2.3 scaling transformations in the
linear recurrences involved. Therefore, an equivalent recursive algorithm is detailed in Appendix B. It permits us to avoid
overflow and underflow. To check the complexity of the proposed algorithm from Appendix B with respect to those given
in [7,9], a graphical comparison for the mean elapsed time in the inversion of some diagonally dominant matrices is finally
provided.

2. Inversion of general tridiagonal matrices

2.1. Algorithms of inversion in the general case

An advance on specialized numerical algorithms for the inversion of general tridiagonal matrices was provided in [7],
beyond the classical method using four vectors on unreducedmatrices; see e.g. [9, Section 4.1]. This algorithm permits us to
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cover the strictly nonsingular matrices, [13]; i.e. tridiagonal nonsingular matrices without singular principal submatrices.
The new difficulty was the location in denominators of the involved formulae of null determinants of some principal
submatrices.

We analyze this difficulty using an equivalent notation based on determinants. Thus, in [7] two vectors, z⃗, y⃗with entries
zi = det Ti, yj = det T (j−1)

n−j+1, were introduced. There is no difficulty with the principal submatrices, but overflow and
underflow should be considered.

The diagonal entries of the inverse matrix, φj,j, were computed as

φj,j =
1

bj − ajcj−1
zj−2
zj−1

− aj+1cj
yj+2
yj+1

=
det Tj−1 det T

(j)
n−j

det T
, (5)

because the resulting expression in the denominator,

bj det Tj−1 det T
(j)
n−j − ajcj−1 det Tj−2 det T

(j)
n−j − aj+1cj det Tj−1 det T

(j+1)
n−j−1,

is simply the expansion of the determinant of T by its j-th row. The off-diagonal entries of the same columnwere computed
in a recursive way, using the diagonal entries; see [7, Eqs. (4)–(5)]. For example Eq. (4) from [7] yields,

φi,j =


−ci

zi−1

zi
φi+1,j = −ci

det Ti−1

det Ti
φi+1,j if i < j,

−ai
yi+1

yi
φi−1,j = −ai

det T (i)
n−i

det T (i−1)
n−i+1

φi−1,j if i > j.
(6)

It is clear that the algorithm breaks down if any principal submatrix of T is singular.
Another algorithm recently given in [9, Algorithm4.1], carries the samedifficultywith principal submatrices. It is initiated

by building in a recursive way two vectors, ϕ⃗, θ⃗ , with entries,

ϕi = −ci
det Ti−1

det Ti
,

θi = −ai
det T (i)

n−i

det T (i−1)
n−i+1

.

(7)

Then, the diagonal and the off-diagonal entries of the inverse were computed with expressions equivalent to (5)–(6),
respectively. Besides a minor flop count, the principal advantage of Algorithm 4.1 from [9] with respect to the one given
in [7, Section 2], is that expressions (7) permit us to control overflow and underflow in the inversion of some tridiagonal
strictly nonsingular matrices. Algorithm 4.1 from [9] also breaks down if any principal submatrix is singular. To overcome
these difficulties the symbolic computation, already introduced in [8], was applied.

In summary, the lack of success of previous specialized numerical algorithms for the inversion of general tridiagonal
matrices is related to the location of null denominators in the involved formulae. Thus, if we handle expressions (1)–(4)
for an algorithm of inversion, we note that this drawback does not appear, because the only involved denominator is the
determinant of a tridiagonal nonsingular matrix.

A simple nonGaussian algorithm to compute the inverse of any tridiagonal nonsingularmatrix is proposed in Appendix A.
It represents a continuation of the results from [7], because its steps 2–3 are equivalent to those first steps of the method
given in [7]. The determinants are evaluated with the vector solutions of the recurrences (3)–(4).

Our algorithm does not break downwhen any principal submatrix is singular. In steps 4–5 the off-diagonal entries of the
inverse matrix are directly computed with the aid of Expression (1).

In the reduced case, and formatriceswith a large order n, products of the ai or the ci that appear in (1)must be considered.
Thus, we build recursively two vectors, prod a and prod c , to avoid the unnecessary computation as well as the repetition of
large products. It is important for the efficacy of the algorithm. As for the computations of (T−1)i,j in (1), we can make the
following substitutions,

(−1)i+j


i

k=j+1

ak


=

prod a(i)
prod a(j)

(i > j) ; (−1)i+j


j−1
k=i

ck


=

prod c(j)
prod c(i)

(i < j) .

The introduction of the previous ratios for both vectors prod a and prod c requires us to handle the null entries ai and ci
in the reduced case. For this task, we introduce the input vectors asign a; for the positions of rows with null entries in the
lower subdiagonal, and asign c; for the positions of columns with null entries in the upper subdiagonal, respectively. Thus,
we avoid the computation of the (null) entries with null products in the denominators.

When an entry ai or ci of T is a null entry, then this tridiagonal nonsingular matrix is a 2 × 2 block matrix, with a null
block element. It is well known that its inverse is also a 2 × 2 block one, with the same null block element. Just consider as
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Fig. 1. Mean value of the elapsed time, 150 trials, in the computations of the inverses.

these null entries are not evaluated by our algorithm.We also take advantage of this fact in the step 1, when initializing T−1

as the null matrix of size n.
Therefore, the computational complexity decreases when the matrix T is a strongly reduced matrix; with many null

entries ai or ci. Our algorithm is especially useful in this scenario, because the unnecessary computation of almost all the
null entries of the inverse is avoided. On the other hand, for unreduced matrices the n2 entries of the inverse are evaluated
by considering the inputs asign a = [1], asign c = [1]. For unreduced tridiagonal matrices the computational complexity is
O(n2), with 4n2

+ O(n) flop counts.
We introduce in Fig. 1 graphics for the general as well as the unreduced case. To check the computational complexity for

general tridiagonal matrices, the mean elapsed time of the algorithm of Appendix A is compared with respect to the built-in
function inv() of theMatlab R⃝ package. Here, the tridiagonal matrices are of order nwith 75 ≤ n ≤ 500, in steps of 25 units,
and take random values from [−5, 5]. As we expected, the complexity of our algorithm decreases in the general case with
respect to the unreduced one.

2.2. Current examples of tridiagonal matrices

Tridiagonal nonsymmetric matrices. We begin with tridiagonal nonsymmetric matrices (type 1 of the test matrices from [15])
with random entries from the interval [−1; 1]. We have checked matrices of this type up to n = 1000, and the algorithm
works correctly in the usage range. An illustrative numerical situation, with n = 7, is given. We consider the unreduced
case; asign a = [1], asign c = [1].

>> T =
0.6294 0.8116 0 0 0 0 0

-0.7460 0.2647 0.8268 0 0 0 0
0 -0.8049 0.0938 -0.4430 0 0 0
0 0 0.9150 -0.6848 0.9298 0 0
0 0 0 0.9412 -0.0292 0.9143 0
0 0 0 0 0.6006 -0.1565 -0.7162
0 0 0 0 0 0.8315 0.5844

>> T^(-1) =
0.8709 -0.6057 0.6789 0.4778 0.6671 -0.7072 -0.8667
0.5568 0.4698 -0.5265 -0.3705 -0.5174 0.5484 0.6721
0.6075 0.5125 0.7811 0.5497 0.7676 -0.8137 -0.9972

-0.8830 -0.7450 -1.1354 0.7896 1.1026 -1.1687 -1.4323
-1.2482 -1.0531 -1.6049 1.1161 0.0567 -0.0601 -0.0736
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0.8691 0.7333 1.1175 -0.7772 -0.0395 1.2012 1.4721
-1.2366 -1.0433 -1.5900 1.1058 0.0561 -1.7091 -0.3834

Tridiagonal reduced matrices. When the nonsingular matrices are also reduced matrices the algorithm works correctly. All
numerical trials produce adequate outputs into the usage range. It also works in the limit of two-band triangular matrices.
When the number of zeros in the subdiagonal increases, the complexity of the algorithm decreases. A numerical situation
is provided with a random reduced matrix of order n = 7. Here, we take asign a = [2, 4, 6, 7], asign c = [3, 5].

>> T =
0.9004 -1.0000 0 0 0 0 0

0 0.5310 0 0 0 0 0
0 1.0000 -0.0205 -1.0000 0 0 0
0 0 0 0.4187 0 0 0
0 0 0 1.0000 0.3594 -1.0000 0
0 0 0 0 0 -0.7620 -1.0000
0 0 0 0 0 0 0.9195

>> T^(-1) =
1.1106 2.0916 0 0 0 0 0

0 1.8832 0 0 0 0 0
0 91.8653 -48.7805 -116.5046 0 0 0
0 0 0 2.3883 0 0 0
0 0 0 -6.6454 2.7824 -3.6515 -3.9711
0 0 0 0 0 -1.3123 -1.4272
0 0 0 0 0 0 1.0875

Tridiagonal symmetric matrices. For the computation of the inverse of tridiagonal symmetricmatrices, step 5 of the algorithm
of Appendix A can be suppressed, because pairs of symmetric entries of the inverse matrix can be evaluated at step 4. When
a tridiagonal symmetric matrix is also a reduced one, both the tridiagonal matrix and its inverse have the same diagonal
block structure. Hence, the computation of the inverse matrix is simple. For these type of matrices a numerical situation
handled with our algorithm, with asign a = asign c = [2, 3, 5, 7], is given.

>> T =
-0.9547 0 0 0 0 0 0

0 -1.9182 0 0 0 0 0
0 0 0.6465 -2.0000 0 0 0
0 0 -2.0000 -1.2752 0 0 0
0 0 0 0 0.5087 -1.0000 0
0 0 0 0 -1.0000 1.3667 0
0 0 0 0 0 0 -1.5909

>> T^(-1) =
-1.0474 0 0 0 0 0 0

0 -0.5213 0 0 0 0 0
0 0 0.2643 -0.4146 0 0 0
0 0 -0.4146 -0.1340 0 0 0
0 0 0 0 -4.4845 -3.2813 0
0 0 0 0 -3.2813 -1.6692 0
0 0 0 0 0 0 -0.6286

Tridiagonal nonsingular matrices with singular principal submatrices. If a tridiagonal nonsingular matrix is not a strictly
nonsingular one, some principal submatrices are singular. Then, new lines of zeros appear in the inverse matrix [15]. Our
algorithm does not avoid the unnecessary evaluation of such zeros, although it can be improved. We give a numerical
example for the inverse of a symmetric Toeplitz matrix of order n = 8 (type 8 of the test matrices from [15]) with
bi = 0, ai = ci = 1. We consider the unreduced case; asign a = [1], asign c = [1].

>> T^(-1) =
0 1 0 -1 0 1 0 -1
1 0 0 0 0 0 0 0
0 0 0 1 0 -1 0 1

-1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 -1
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1 0 -1 0 1 0 0 0
0 0 0 0 0 0 0 1

-1 0 1 0 -1 0 1 0

Tridiagonal strictly diagonally dominant matrices. Finally, the strictly diagonally dominant matrices are tested. In particular,
we check two Toeplitz matrices. Note as for tridiagonal Toeplitz-like matrices the solutions of the recurrences (3)–(4) are
the same; i.e. det Tk = det T (n−k)

k . First we consider here the inversion of symmetric Toeplitz matrices of type 7 from [15],
with bi = 108, ai = ci = 1. For matrices of order n < 39 the algorithm works correctly. The algorithm overflows during
the computation of the determinants, when the order increases in such a way that n ≥ 39. We also consider another
nonsymmetric Toeplitz matrix, with bi = 10−3, ai = −10−4 ci = 10−5. For matrices of order n < 67 the algorithm works
correctly. Nevertheless, when n ≥ 67 the algorithm underflows.

2.3. Algorithm for avoiding overflow and underflow in diagonally dominant matrices

All the entries on themain diagonal of any tridiagonal diagonally dominantmatrix are non null entries, when suchmatrix
is nonsingular. For sufficiently large order n, it will enables us to avoid overflow and underflow of the recurrences and large
products involved in the computation of the inverses of suchmatrices. To reach this goal, we introduce the following scaling
transformations to obtain the solutions from the linear recurrences (3) and (4), respectively,

det Tk−1 =


k−1
i=1

bi


SLk−1; det T (k)

n−k =


n

i=k+1

bi


SRn−k. (8)

The transformed recurrences, with initial conditions SL0 = SL1 = 1; SR0 = SR1 = 1, are,

SLk+2 = SLk+1 −
ak+2ck+1

bk+2bk+1
SLk; SRk+2 = SRk+1 −

an−kcn−k−1

bn−kbn−k−1
SRk. (9)

Note that, for strictly diagonally dominant matrices, when solutions of the linear recurrences (3) and (4) grow (or reduce)
quickly in magnitude, although the transformed recurrences (8) and (9) have a slow variation from the given initial
conditions. This aspect has amain rolewhenhandling overflowandunderflowusing such recurrences. After the introduction
of the preceding transformations, the representation (1) for the entries of the inverse matrix yields

(T−1)ij =


(−1)i+j


i

k=j+1


ak
bk


SLj−1 · SRn−i

bj · SLn
if i > j,

(−1)i+j


j−1
k=i


ck
bk


SLi−1 · SRn−j

bj · SLn
if i ≤ j.

(10)

For sufficiently large n, Expression (10) does not solve these difficulties. In particular, we adapt the algorithm from
Appendix A to the new representation (10) and the example of type 7 from [15] is checked. We note that the algorithm
underflows, because the denominators involved in the products from (10) are bigger. Then, large products must also be
avoided.

A recursive relation between two consecutive entries in the same row of the inverse matrix can be derived from (10),

(T−1)ij =


−


aj+1 · SLj−1

bj · SLj


(T−1)i,j+1 if i > j,

−


cj−1 · SRn−j

bj · SRn−j+1


(T−1)i,j−1 if i < j.

(11)

Indeed, Expression (10) can be considered as a direct evaluation for the diagonal entries of the inverse and it does not bring
problems, because in this scenario all terms of the denominators are non-null terms. Also, large products are not involved.
That is, after the evaluation of the main diagonal, we can compute all the entries using a row-by-row procedure, via the
recursive relations (11). Hence, the difficulties associated with overflow and underflow in the recurrences and the large
products are controlled.

The preceding method is introduced in the alternative algorithm of Appendix B for the inversion of the tridiagonal
diagonally dominant matrices. This algorithm gives adequate outputs even on matrices of a large order n. However, the
algorithm of the Appendix A goes beyond of the usage range.

We check the algorithm of Appendix B with the numerical tests on strictly diagonally dominant matrices given in
Section 2.2. Thus, for symmetric matrices of type 7 from [15], the algorithmworks correctly; overflow is avoided for n > 39.
Also, for nonsymmetric Toeplitz matrices with bi = 10−3, ai = −10−4, and ci = 10−5, the algorithm of Appendix B does not
underflow for n > 67. Other tested strictly diagonally dominant matrices, where the algorithm of Appendix A overflows or
underflows, have also given adequate outputs. A numerical illustration is given, with n = 7, and the vectors asign a = [2],
asign c = [4, 6],
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Fig. 2. Comparison of the mean value, in Log scale, for the elapsed times, 150 trials, in the computation of the inverses of some tridiagonal diagonally
dominant matrices.

>> T =
2 1 0 0 0 0 0
0 4 1 0 0 0 0
0 -1 6 0 0 0 0
0 0 -2 8 2 0 0
0 0 0 -2 10 0 0
0 0 0 0 2 12 4
0 0 0 0 0 6 14

>> T^(-1) =
0.5000 -0.1200 0.0200 0 0 0 0

0 0.2400 -0.0400 0 0 0 0
0 0.0400 0.1600 0 0 0 0
0 0.0095 0.0381 0.1190 -0.0238 0 0
0 0.0019 0.0076 0.0238 0.0952 0 0
0 -0.0004 -0.0015 -0.0046 -0.0185 0.0972 -0.0278
0 0.0002 0.0006 0.0020 0.0079 -0.0417 0.0833

The computational complexity of our proposed algorithms depends on the subdiagonal entries of the involved tridiagonal
matrix. For the unreduced case both algorithms requires 4n2

+ O(n) flop counts.
As the diagonally dominant matrices are also strictly nonsingular, we can compare the computational complexity of the

algorithm of Appendix B with those given in [7,9]. For this task we handle random tridiagonal nonsingular matrices with
non-null entries bi = 10−3, ai = −10−4

· randi([−5; 5]), and ci = 10−4
· randi([−5; 5]), where randi([−5; 5]) is a random

integer from the given closed interval.
In Fig. 2 a comparison of the mean elapsed times, on 150 trials, is provided. In each trial, random matrices are taken in

an increasing order, from n = 40 to n = 300, in steps of 10 units. For a finer comparison, the mean values are given in a
Log scale. Outcomes show the robustness of the algorithms under study. Nevertheless, the algorithm from [7, Section 2],
underflows when n ≥ 110. As we expected, the algorithm from [9] and the one proposed in Appendix B avoid underflow.

Algorithm 4.1 from [9] obtains shorter elapsed times in the unreduced scenario. Although for general reduced diagonally
dominant matrices, the algorithm of Appendix B has a minor complexity, as it can be observed in Fig. 2. Therefore, a
combination of both numerical algorithms could be of interest for the inversion of tridiagonal strictly nonsingular matrices.
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Appendix A. A numerical algorithm of inversion

Input:
• Order n and the components {ai, bi, ci} of the tridiagonal matrix T .
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• A vector with the positions of rows with null entries in the lower subdiagonal, (asign a).
• The total number of null entries in the lower subdiagonal, (numbera).
• A vector with the positions of columns with null entries in the upper subdiagonal, (asign c).
• The total number of null entries in the upper subdiagonal, (numberc).

(For unreduced matrices we take number = 1 and asign = 1 for both subdiagonals).
Output: T−1 the inverse of the tridiagonal matrix T .

1. Initialize T−1 as the null matrix of size n.
2. Set the initial conditions. For k = 3 : n + 1; build the two vectors of principal determinants.
3. For i = 1 : n; evaluate (T−1)ii, the entries of the main diagonal.
4. Evaluate the entries of the lower triangle of T−1.

(a) prod a(1) = 1. For k = 2:asign a(1) − 1; prod a(k) = −ak ∗ prod a(k − 1).
For j = 1 : k − 1; evaluate (T−1)k,j.

(b) Form = 2:numbera; prod a(asign a(m − 1)) = 1.
For k = asign a(m − 1) + 1:asign a(m) − 1: prod a(k) = −ak ∗ prod a(k − 1);
For j = asign a(m − 1) : k − 1; evaluate (T−1)k,j.

(c) prod a(asign a(numbera)) = 1;
For k = asign a(numbera) + 1 : n; prod a(k) = −ak ∗ prod a(k − 1);
For j = asign a(numbera) : k − 1; evaluate (T−1)k,j.

5. Evaluate the entries of the upper triangle of T−1.
(a) prod c(1) = 1. For k = 2:asign c(1) − 1; prod c(k) = −ck−1∗ prod c(k − 1).

For i = 1 : k − 1; evaluate (T−1)i,k.
(b) Form = 2 : numberc; prod c(asign c(m − 1)) = 1.

For k = asign c(m − 1) + 1:asign c(m) − 1: prod c(k) = −ck−1 ∗ prod c(k − 1);
For i = asign c(m − 1) : k − 1; evaluate (T−1)i,k.

(c) prod c(asign c(numberc)) = 1;
For k = asign c(numberc) + 1 : n; prod c(k) = −ck−1 ∗ prod c(k − 1);
For i = asign c(numberc) : k − 1; evaluate (T−1)i,k.

Appendix B. A numerical algorithm for the inversion of tridiagonal diagonally dominant matrices

Input:

• Order n and the components {ai, bi, ci} of the tridiagonal matrix T .
• A vector with the positions of rows with null entries in the lower subdiagonal, (asign a).
• The total number of null entries in the lower subdiagonal, (numbera).
• A vector with the positions of columns with null entries in the upper subdiagonal, (asign c).
• The total number of null entries in the upper subdiagonal, (numberc).

(For unreduced matrices we take number = 1 and asign = 1 for both subdiagonals).
Output: T−1 the inverse of the tridiagonal diagonally dominant matrix T .

1. Initialize T−1 as the null matrix of size n.
2. Set the initial conditions. For k = 3 : n + 1; build the two scaling vectors, (9).
3. For i = 1 : n; evaluate (T−1)ii, the entries of the main diagonal, Eq. (10).
4. Evaluate the entries of the lower triangle of T−1, relation (11).

(a) For k = 2: asign a(1) − 1;
For j = k − 1 : −1 : 1; evaluate (T−1)k,j.

(b) Form = 2 : numbera;
For k = asign a(m − 1) + 1: asign a(m) − 1 :

For j = k − 1 : −1: asign a(m − 1); evaluate (T−1)k,j.
(c) For k = asign a(numbera) + 1 : n;

For j = k − 1 : −1: asign a(numbera); evaluate (T−1)k,j.

5. Evaluate the entries of the upper triangle of T−1, relation (11).
(a) For k = 2: asign c(1) − 1;

For j = k : asignc(1) − 1; evaluate (T−1)k−1,j.
(b) Form = 2 : numberc;

For k = asign c(m − 1) + 1: asign c(m) − 1;
For j = k: asign c(m − 1); evaluate (T−1)k−1,j.

(c) For k = asign c(numberc) + 1 : n;
For j = k : n; evaluate (T−1)k−1,j.
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