期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:236
Computing the eigenvalues of the generalized Sturm-Liouville problems based on the Lie-group SL(2, R)
Article
Liu, Chein-Shan
关键词: Generalized Sturm-Liouville problem;    Eigenvalue;    Eigenfunction;    Eigen-parameter dependent boundary conditions;    SL(2, R) Lie-group shooting method;    Characteristic equation;   
DOI  :  10.1016/j.cam.2012.05.006
来源: Elsevier
PDF
【 摘 要 】

For the generalized Sturm-Liouville problems we can construct an SL(2, R) Lie-group shooting method to find eigenvalues. By using the closure property of the Lie-group, a one-step Lie-group transformation between the boundary values at two ends of the considered interval is established. Hence, we can theoretically derive an analytical characteristic equation to determine the eigenvalues for the generalized Sturm-Liouville problems. Because the closed-form formulas are derived to calculate the unknown left-boundary values in terms of lambda, the present method provides an easy numerical implementation and has a cheap computational cost. Numerical examples are examined to show that the present SL(2, R) Lie-group shooting method is effective. (C) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_05_006.pdf 427KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次