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a b s t r a c t

For the generalized Sturm–Liouville problems we can construct an SL(2, R) Lie-group
shootingmethod to find eigenvalues. By using the closure property of the Lie-group, a one-
step Lie-group transformation between the boundary values at two ends of the considered
interval is established. Hence, we can theoretically derive an analytical characteristic
equation to determine the eigenvalues for the generalized Sturm–Liouville problems.
Because the closed-form formulas are derived to calculate the unknown left-boundary
values in terms of λ, the present method provides an easy numerical implementation
and has a cheap computational cost. Numerical examples are examined to show that the
present SL(2, R) Lie-group shooting method is effective.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Sturm–Liouville problem has a variety of applications in partial differential equations, vibration of continuum
mechanics, and quantum mechanics. There is a continued interest in the numerical solutions of Sturm–Liouville problems
with the aim to improve the convergence speed and ease of numerical implementation. In order to obtain more efficient
numerical results, several numerical methods have been developed [1–11].

AlthoughGhelardoni et al. [12] havediscussed a shooting technique for computing the eigenvalues, to our best knowledge
there is no study on the Lie-group SL(2, R) shootingmethod and apply it to the generalized Sturm–Liouville problem. In this
paperwe propose a new shootingmethod based on the Lie-group SL(2, R) for computing the eigenvalues and eigenfunctions
of the following generalized Sturm–Liouville problem:

d
dx


p(x)

dy(x)
dx


+ q(x, λ)y(x) = 0, x0 < x < xf , (1)

a1(λ)y(x0) + a2(λ)p(x0)y′(x0) + a3(λ)y(xf ) + a4(λ)p(xf )y′(xf ) = a0(λ), (2)

b1(λ)y(x0) + b2(λ)p(x0)y′(x0) + b3(λ)y(xf ) + b4(λ)p(xf )y′(xf ) = b0(λ). (3)

Here we suppose that y2(x0) + [p(x0)y′(x0)]2 > 0 in order to avoid the solution of y to be zero. The present problem is that
for the given functions of p(x) and q(x, λ) and all the coefficients ai, bi, i = 0, . . . , 4 we need to calculate the eigenvalue λ
and the eigenfunction y(x). In the above we suppose that p(x) > 0, and q(x, λ) > 0 can be an arbitrary nonlinear function
of x and λ. In the latter sense, Eqs. (1)–(3) constitute a nonlinear Sturm–Liouville problem.

The group-preserving scheme (GPS) has been developed in [13] for the integration of initial value problems (IVPs).
Liu [14–16] has extended and modified the GPS for ordinary differential equations (ODEs) to solve the boundary value
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problems (BVPs). Liu [17] could solve an inverse Sturm–Liouville problembyusing the Lie-groupmethod to find the potential
function q(x) with a high accuracy. In the construction of the Lie-groupmethod for the numerical solutions of BVPs, Liu [14]
has introduced the idea of one-step GPS by utilizing the closure property of the Lie-group, and hence, the new shooting
method has been labeled the Lie-group shooting method (LGSM). However, this method needs to be modified for the
Sturm–Liouville problem [18]. Recently, Liu [19] has developed a more powerful Lie-group adaptive method for computing
a leading coefficient in the Sturm–Liouville operator by using the boundary data.

When the coefficient q(x, λ) depends nonlinearly on the eigen-parameter λ, we have a generalized Sturm–Liouville
problem. This also concerns the problems with eigen-parameter dependent boundary conditions [20–26]. The problem in
Eqs. (1)–(3) essentially differs from the classical one and is more difficult to solve, and so far only a few methods have been
proposed for solving the generalized Sturm–Liouville problems. Liu [26] has solved the generalized Sturm–Liouville problem
by using a Lie-group shooting method to find the eigenvalues and eigenfunctions. Numerical methods for computing
the eigenvalues of the generalized Sturm–Liouville problems with eigen-parameter dependent boundary conditions have
been developed [21–28]. The shooting method presented in this paper is based on the Lie-group SL(2, R), which is an
extension and simpler than the previous works of Liu [18,26], which are based on the Lie-group SOo(2, 1). Here we develop
a more powerful Lie-group shooting method (LGSM) directly based on the Lie-group SL(2, R) for solving the generalized
Sturm–Liouville problems. In most cases, it is not possible to obtain the eigenvalues of the generalized Sturm–Liouville
problem analytically. However, in the present paper we can derive a closed-form algebraic equation to compute these
eigenvalues analytically.

The remaining parts of this paper are arranged as follows. In Section 2 we propose a self-adjoint formulation of the
second-order linear ODE, and develop an SL(2, R) Lie-group shootingmethod for solving the boundary value problem (BVP)
of second-order ODE. In Section 3, two numerical examples are given for solving the BVPs by using the newly developed
SL(2, R) Lie-group shooting method. Based on the results in Section 3, we derive a rather simple characteristic equation
to compute the eigenvalues in Section 4. Numerical examples for the generalized Sturm–Liouville problems are given in
Section 5. Finally, we draw some conclusions in Section 6.

2. An SL(2, R) Lie-group shooting method

2.1. A group-preserving scheme (GPS)

Usually, we may write

u′′(x) + a(x)u′(x) + b(x)u(x) = 0, x > x0 (4)

as a system of two first-order ODEs by

d
dx


u(x)
u′(x)


=


0 1

−b(x) −a(x)

 
u(x)
u′(x)


. (5)

However, upon letting

p(x) = exp
 x

x0
a(ξ)dξ


(6)

be the integrating factor of Eq. (4) we have

d
dx

(p(x)u′(x)) = −p(x)b(x)u(x). (7)

It shows that the left-hand side can be managed to a total differential form by using the concept of integrating factor.
Furthermore, from Eq. (7) we have a self-adjoint system:

d
dx


u(x)

p(x)u′(x)


=

 0
1

p(x)
−p(x)b(x) 0

 u(x)
p(x)u′(x)


. (8)

This system is better than system (5), because it allows a Lie-group symmetry of SL(2, R):

d
dx

G = AG, G(x0) = I2, (9)

A(x) =

 0
1

p(x)
−p(x)b(x) 0

 , (10)

det G = 1. (11)
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Here we prove det G = 1. For this purpose we take

G(x) =


G11(x) G12(x)
G21(x) G22(x)


, (12)

such that

det G(x) = G11(x)G22(x) − G21(x)G12(x). (13)

Taking the differential with respect to x and using Eqs. (9) and (10) we have

d
dx

[det G(x)] = G′

11(x)G22(x) + G11(x)G′

22(x) − G′

21(x)G12(x) − G21(x)G′

12(x)

=
1

p(x)
G21(x)G22(x) − p(x)b(x)G11(x)G12(x) + p(x)b(x)G11(x)G12(x) −

1
p(x)

G21(x)G22(x) = 0.

Thus det G(x) is a constant, and by G(x0) = I2 we have det G(x) = 1.
Accordingly, we can develop a group-preserving scheme (GPS) to solve Eq. (8):

Xk+1 = G(k)Xk, (14)

where Xk denotes the numerical value of X = (u, pu′)T at the discrete space xk, and G(k) ∈ SL(2, R). This Lie-group
symmetry is known as a two-dimensional real-valued special linear group, denoted by SL(2, R). Liu and Atluri [29] have taken
the advantage of the Lie-group SL(2, R) for effectively solving a discretized inverse Sturm–Liouville problem under specified
eigenvalues.

2.2. A generalized mid-point rule

Applying the GPS in Eq. (14) to Eq. (8) with initial condition X(x0) = X0 we can find X(x). Assuming that the stepsize
used in the GPS is ∆x = (xf − x0)/K , we can calculate the value of X at x = xf by

Xf = GK (∆x) · · ·G1(∆x)X0. (15)

Now we prove the following closure property of the Lie-group SL(2, R):

G1(x), G2(x) ∈ SL(2, R) ⇒ G2(x)G1(x) ∈ SL(2, R). (16)

By the assumptions of G1(x) ∈ SL(2, R) and G2(x) ∈ SL(2, R) we have det G1(x) = 1 and det G2(x) = 1. Then by using the
following equation:

det [G2(x)G1(x)] = det G2(x) det G1(x),

it is straightforward to verify that det [G2(x)G1(x)] = 1, which means that G2(x)G1(x) ∈ SL(2, R). Thus we have proven
Eq. (16).

Because each Gi, i = 1, . . . , K is an element of the Lie-group SL(2, R), and by the above closure property of the Lie-group
SL(2, R),GK (∆x) · · ·G1(∆x) is also a Lie-group element of SL(2, R), denoted by G. Hence, we have

Xf = GX0. (17)

This is a one-step Lie-group transformation from X0 to Xf by G ∈ SL(2, R).
Usually it is very hard to obtain an exact solution of G. Before the derivation of a suitable G, let us recall the mean value

theorem for a continuous function f (x), which is defined in an interval of x ∈ [a, b]. The mean value theorem asserts that
there exists at least one c ∈ [a, b], such that the following equality holds: b

a
f (x)dx = f (c)[b − a], (18)

where the value of c depends on the function f (x). In terms of theweighting factor r ∈ [0, 1], we canwrite c = ra+(1−r)b.
Therefore, it means that there exists at least one r ∈ [0, 1], such that Eq. (18) is satisfied. The above theorem enables us to
evaluate the value of the integral in Eq. (18) by an area of a rectangle with a width b − a and a height f (c), where f (c) is
calculated by a mid-point rule with a suitable c ∈ [a, b].

Because G is a solution of Eq. (9), we can formally write it by an exponential mapping:

G(x) = exp
 x

x0
A(ξ)dξ


. (19)

When A(x) is not a constant matrix, in general we do not have a closed-form solution of G(x). However, motivated by the
above mean value theorem and to be a reasonable approximation, we can calculate G at x = xf by a generalized mid-point
rule, which is obtained from an exponential mapping of A by taking the value of the variable x in A at a suitable mid-point:
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x̂ = rx0 + (1 − r)xf , where r ∈ [0, 1] is an unknown constant to be determined, which is dependent on the problem. So we
can compute this G, which is corresponding to a constant matrix A:

A(x̂) =:


0 c1
c2 0


=

 0
1

p(x̂)
−p(x̂)b(x̂) 0

 , (20)

where c1 and c2 are two constants.
This Lie-group element generated from such a constant A ∈ sl(2, R) permits the closed-form solutions (see the

Appendix):

G(r) =

 cos[(xf − x0)ĉ]
1

p(x̂)ĉ
sin[(xf − x0)ĉ]

−p(x̂)ĉ sin[(xf − x0)ĉ] cos[(xf − x0)ĉ]

 , if b(x̂) > 0, (21)

G(r) =

 cosh[(xf − x0)ĉ]
1

p(x̂)ĉ
sinh[(xf − x0)ĉ]

p(x̂)ĉ sinh[(xf − x0)ĉ] cosh[(xf − x0)ĉ]

 , if b(x̂) < 0, (22)

where

x̂ = rx0 + (1 − r)xf , (23)

ĉ =


b(x̂), if b(x̂) > 0, (24)

ĉ =


−b(x̂), if b(x̂) < 0. (25)

The above G is a single-parameter Lie-group element, denoted by G(r), r ∈ [0, 1].

2.3. An SL(2, R) shooting method

When Eq. (4) is subjected to the Dirichlet boundary values at the two ends of an interval of x ∈ [x0, xf ], we have a
boundary-value problem (BVP). The stepping technique developed for solving the initial-value-problem (IVP) requires both
the initial conditions of w1 = u and w2 = pu′ for the second-order ODEs. Starting from the initial values of w1 and w2, we
can numerically integrate the following IVP step-by-step from x = x0 to x = xf :

d
dx


u(x)

p(x)u′(x)


=

 0
1

p(x)
−p(x)b(x) 0

 u(x)
p(x)u′(x)


, (26)

u(x0) = u0, (27)

p(x0)u′(x0) = A, (28)

where A is an unknown constant.
When u0 and uf are given, by Eqs. (17), (21) and (22)we can obtain

uf
p(xf )u′(xf )


=

 cos[(xf − x0)ĉ]
1

p(x̂)ĉ
sin[(xf − x0)ĉ]

−p(x̂)ĉ sin[(xf − x0)ĉ] cos[(xf − x0)ĉ]

u0
A


, if b(x̂) > 0, (29)


uf

p(xf )u′(xf )


=

 cosh[(xf − x0)ĉ]
1

p(x̂)ĉ
sinh[(xf − x0)ĉ]

p(x̂)ĉ sinh[(xf − x0)ĉ] cosh[(xf − x0)ĉ]

u0
A


, if b(x̂) < 0. (30)

Thus we can solve the unknown A by

A =
p(x̂)ĉ

sin[(xf − x0)ĉ]


uf − u0 cos[(xf − x0)ĉ]


, if b(x̂) > 0, (31)

A =
p(x̂)ĉ

sinh[(xf − x0)ĉ]


uf − u0 cosh[(xf − x0)ĉ]


, if b(x̂) < 0. (32)

For the special case with b = 0 (ĉ = 0) we can use

A =
p(x̂)

xf − x0
[uf − u0]. (33)
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a

b

Fig. 1. For Example 1: (a) plotting the error of mis-matching, and (b) plotting the numerical error.

For a trial r , we can calculate A (and thus p(x0)u′(x0)) from the above equations and then numerically integrate Eq. (26)
by the fourth-order Runge–Kutta method (RK4) from x0 to xf , and compare the end value of uf with the exact one u(xf ),
which is a target to be matched. If the absolute value of the difference between the computed result uf with the exact one
u(xf ) is smaller than a given error tolerance ε (say, ε = 10−10), i.e., |u(xf )− uf | < ε, then the process of finding the solution
u(x) is finished. Indeed, we need to find the root of equation u(xf ) − uf = 0, which can be done in practice by adjusting the
value of r to a point such that the curve of mis-matching error is intersected with the zero line at that point. In Fig. 1(a) we
plot the zero line and the curve of mis-matching error, whose intersecting point gives the desired value of r .

3. Numerical examples of BVP

3.1. A non-singular case

Let us consider a special case

u′′(x) +
u(x)
x2

= 0, 1 ≤ x ≤ 3, (34)

with u(x) having a closed-form solution:

u(x) =
√
x


u(1) cos

√
3
2

ln x


+

2u′(1) − u(1)
√
3

sin

√
3
2

ln x


. (35)

By setting u(1) = 1 and u′(1) = 1 we can obtain uf = u(3) from the above equation.
When we apply the RK4 to integrate Eq. (34) we fix ∆x = 0.001. In Fig. 1(a) we plot the curve of mis-matching to the

target uf −u(3) = 0 in a range of r ∈ [0.7, 0.72]. It can be seen that there exists a value of r near 0.705, of which the curve of
mis-matching error is intersected with the zero line, and at which the mis-matching is zero. Then we give a finer tuning of
r to r = 0.705339222, and the numerical solution and exact solution are almost coincident with the numerical error being
shown in Fig. 1(b). It can be seen that the numerical error is very small in the order of 10−10.

3.2. A singular case

We solve the second example given by

ϵu′′
+ u′

= 1 + 2x, (36)
u(0) = 0, u(1) = 1. (37)

For ϵ = 0.01, this example has been calculated in [30,31] with high-order finite difference methods.
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a

b

Fig. 2. For Example 2: (a) plotting the error of mis-matching, and (b) plotting the numerical error.

Table 1
For Example 2 comparing the numerical errors with that of [30,16].

x [30] [16] Present

0.002 3.6 × 10−5 8.7 × 10−9 3.5 × 10−9

0.004 5.0 × 10−5 1.4 × 10−7 5.9 × 10−9

0.006 7.3 × 10−5 1.8 × 10−7 7.2 × 10−9

0.008 8.1 × 10−5 1.9 × 10−7 7.9 × 10−9

0.010 8.4 × 10−5 2.0 × 10−7 8.1 × 10−9

0.012 8.4 × 10−5 1.9 × 10−7 7.9 × 10−9

0.014 8.1 × 10−5 1.8 × 10−7 7.6 × 10−9

0.016 7.8 × 10−5 1.7 × 10−7 7.1 × 10−9

0.018 7.3 × 10−5 1.6 × 10−7 6.5 × 10−9

0.020 6.9 × 10−5 1.4 × 10−7 5.9 × 10−9

0.022 6.3 × 10−5 1.3 × 10−7 5.3 × 10−9

0.024 6.0 × 10−5 1.2 × 10−7 4.8 × 10−9

0.026 4.4 × 10−5 1.0 × 10−7 4.2 × 10−9

0.028 5.0 × 10−5 9.1 × 10−8 3.7 × 10−9

0.030 4.6 × 10−5 8.0 × 10−8 3.3 × 10−9

Because of ϵ = 0.01, the system is singular, and we can directly apply the shooting method in Section 2 to this problem.
When we apply the RK4 we fix ∆x = 0.0005. In Fig. 2(a) we plot the curve of mis-matching to the target u(1) − 1 = 0 in
a range of r ∈ [0.95, 1]. It can be seen that there exists a value of r near 0.95, of which the mis-matching is zero. Then we
give a finer tuning of r to r = 0.95394829816182. By comparing with the closed-form solution

u(x) = x(x + 1 − 2ϵ) + (2ϵ − 1)
1 − exp(−x/ϵ)
1 − exp(−1/ϵ)

, (38)

the final numerical value of u can match very well with the exact one with an error 1.18 × 10−13. The numerical error
between the numerical solution and the exact solution is shown in Fig. 2(b). It can be seen that the numerical error is very
small in the order of 10−8.

In Table 1 we compare the numerical errors of the numerical results obtained in [30,16]. Obviously, our errors are much
smaller than that of Varner and Choudhury [30], and is also better than that of Liu [16].

Ilicasu and Schultz [31] have calculated this problem by using the high-order finite-difference method. Our maximum
error is 8.1 × 10−9, which is slightly larger than that of 6.3 × 10−9 obtained in [31]. However, the present SL(2, R)
Lie-group shooting method is easily numerically implemented and can be readily extended to the generalized boundary
value problem.
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4. An analytical solution of eigenvalues

In Section 2 we have derived the closed-form formulas to calculate the slope A for each r ∈ [0, 1]. If A is available, then
we can apply the RK4 to integrate Eq. (8). Up to this point we have developed an SL(2, R) Lie-group shooting method for
solving the BVP of second-order ODE. Now,we turn our attention to the generalized Sturm–Liouville problem in Eqs. (1)–(3).

In principle, if there exists one solution y of Eqs. (1)–(3), there are many solutions of the type αy, α ∈ R, α ≠ 0. It means
that the slope A can be an arbitrary value. So the factor r in Eq. (29) can be any value in the interval of r ∈ [0, 1]. Now, we can
fix r = 1/2, and then by solving the simultaneous equations (2), (3) and (29) or (30) we can derive the following equations
for y0 and A:

y0 =

a0 a2 + a3G12 + a4G22
b0 b2 + b3G12 + b4G22

 a1 + a3G11 + a4G21 a2 + a3G12 + a4G22
b1 + b3G11 + b4G21 b2 + b3G12 + b4G22

−1

, (39)

A =

a1 + a3G11 + a4G21 a0
b1 + b3G11 + b4G21 b0

 a1 + a3G11 + a4G21 a2 + a3G12 + a4G22
b1 + b3G11 + b4G21 b2 + b3G12 + b4G22

−1

, (40)

where y0 and A only depend on λ, Gij denotes the components of G in Eq. (21) or Eq. (22), and p(x̂) = p((x0 + xf )/2) and
ĉ =


q(x̂, λ)/p(x̂) with x̂ = (x0 + xf )/2.

In order to calculate the eigenvalues we let λ run in a selected interval we interest, and then insert λ into Eqs. (39) and
(40) to obtain y0 and A, and calculate yf and p(xf )y′(xf ) by integrating Eq. (1). Therefore, we can plot a curve revealing the
variation of

Z := b1(λ)y(x0) + b2(λ)p(x0)y′(x0) + b3(λ)y(xf ) + b4(λ)p(xf )y′(xf ) − b0(λ) (41)

with respect to λ, namely the eigenvalue curve, of which the intersecting points between the eigenvalue curvewith the zero
line give the values of the required eigenvalues.

Remark. If both a0 and b0 in Eqs. (2) and (3) are zeros, we have to impose the following condition:a1 + a3G11 + a4G21 a2 + a3G12 + a4G22
b1 + b3G11 + b4G21 b2 + b3G12 + b4G22

 = 0; (42)

hence, y0 and A are not both being zeros. The most of the following examples will use the above characteristic equation to
compute the eigenvalues.

5. Numerical examples

5.1. Example 3

For a first and simple test example of the generalized Sturm–Liouville problem we consider

y′′(x) + λy(x) = 0, 0 < x < π, (43)

y(0) = 1, y(π) = cos
√

λπ


. (44)

Here, λ = k2, k ∈ N are eigenvalues and cos(kx), k ∈ N are eigenfunctions.
We apply the SL(2, R) Lie-group shooting method in Section 4 to calculate the eigenvalues in a range of 0 < λ < 50.

From Fig. 3 it can be seen that the curve of sgn(Z) := Z/|Z | is intersected with the zero line at λ = 1, 4, 9, 16, 25, 36, 49,
which are corresponding to k = 1, 2, 3, 4, 5, 6, 7. In this calculation the stepsize used in the RK4 is ∆x = 0.01.

5.2. Example 4

Inspired by [21] we consider an eigen-parameter dependent boundary condition of a generalized Sturm–Liouville
eigenvalue problem with

y′′(x) + λy(x) = 0, 0 < x < 1, (45)

y′(0) = 0,


λ −
λ2

π2


y(1) + y′(1) = 0. (46)

As demonstrated in [21], λ = 0 is a double eigenvalue, λ = π2 is a simple eigenvalue and all other simple eigenvalues
are the roots of the following equation:

tan
√

λ =
√

λ


1 −

λ

π2


. (47)
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Fig. 3. For Example 3 displaying the eigenvalue curve.

Similarly, by using Eq. (42) we can derive the above same result as that obtained in [21]. Here, we however give a theoretical
proof from the Lie-group shooting method based on SL(2, R).

With the initial conditions of y0 = 0.5 and A = y′

0 = 0 which is obtained from the first equation in Eq. (46) while
y0 = 0.5 is an arbitrarily given nonzero value, we apply the SL(2, R) Lie-group shooting method in Section 4 to calculate
the eigenvalues in a range of 0 < λ < 25. From Fig. 4(a) it can be seen that the curve of sgn(Z) is intersected with the zero
line at two points. Therefore, for the purpose of comparison we also plot the curves of the above two functions in Fig. 4(b)
by the dotted points, whose intersecting points are the roots. The results are coincident with the zero points in Fig. 4(a).

5.3. Example 5

The following test example is taken from [20,22]:

y′′(x) + λy(x) = 0, 0 < x < 1, (48)

y(0) + (λ − 4π2)y′(0) = 0, y(1) − λy′(1) = 0. (49)

Inserting these coefficient functions into Eq. (42) and using ĉ =
√

λ we can derive

f (λ) = (1 + 4π2λ2
− λ3) sin

√
λ −

√
λ(2λ − 4π2) cos

√
λ = 0, (50)

which can be used to determine λ for the generalized Sturm–Liouville eigenvalue problem in Eqs. (48) and (49).
With the initial conditions of y0 = A(4π2

− λ) and A = y′

0 = 1 we apply the SL(2, R) Lie-group shooting method in
Section 4 to calculate the eigenvalues in a range of 0 < λ < 160. From Fig. 5(a) it can be seen that the curve of sgn(Z) is
intersected with the zero line at three points. For the purpose of comparison we also plot the curve of the above function
f (λ) given in Eq. (50) in Fig. 5(b) by the solid line, whose intersecting points with the zero line are the roots. The results are
coincident with the zero points in Fig. 5(a). Then when the eigenvalues are available we use the Lie-group shooting method
to compute the corresponding first three eigenfunctions in Fig. 6.

Chanane [22] by using the sampling method has derived the above characteristic equation (50) and also found three
eigenvalues in the range of [0, 160]. Here, we give a theoretical proof from the Lie-group shootingmethod based on SL(2, R).

5.4. Example 6

The following example is taken from [22,24]:

y′′(x) + (λ − ex)y(x) = 0, 0 < x < 1, (51)

y(0) = 0, −
√

λ sin
√

λy(1) + cos
√

λy′(1) = 0. (52)
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Fig. 4. For Example 4: (a) plotting the eigenvalue curve, and (b) the two curves determine the eigenvalues.

Inserting these coefficient functions into Eq. (42) and using ĉ =


|λ −

√
e| we can derive

f (λ) = cos
√

λ cosh ĉ −

√
λ

ĉ
sin

√
λ sinh ĉ, if 0 < λ <

√
e, (53)

f (λ) = cos
√

λ cos ĉ −

√
λ

ĉ
sin

√
λ sin ĉ, if λ >

√
e. (54)

The zero points of f (λ) = 0 can be used to determine λ for the generalized Sturm–Liouville eigenvalue problem in
Eqs. (51) and (52). Based on the regularized sampling method, Chanane [22] has derived a characteristic equation in terms
of modified Bessel functions of the first kind, which is much complex than the above two equations.

With the initial conditions of y0 = 0 and A = y′

0 = 1 we apply the SL(2, R) Lie-group shooting method in Section 4 to
calculate the eigenvalues in a range of 0 < λ < 80. From Fig. 7(a) it can be seen that the curve of sgn(Z) is intersected
with the zero line at six points. For comparison purpose we also plot the curves of the above function f (λ) given in
Eqs. (53) and (54) in Fig. 7(b), whose intersecting points with the zero line are the roots. The results are coincident with
the zero points in Fig. 7(a). In Table 3.4 of [22] and Table 5 of [24], there were also six eigenvalues being reported. Here, we
give a theoretical result obtained from the Lie-group shootingmethod based on SL(2, R), and the formulas (53) and (54) can
be derived explicitly.

5.5. Example 7

The following example is taken from [24,25]:

y′′(x) +
y(x)

(λ + x2)2
= 0, 0 < x < 1, (55)
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Fig. 5. For Example 5: (a) plotting the eigenvalue curve, and (b) the two curves determine the eigenvalues.

Fig. 6. For Example 5 plotting the first three eigenfunctions.
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Fig. 7. For Example 6: (a) plotting the eigenvalue curve, and (b) the curve determines the eigenvalues.

y(0) = y(1) = 0. (56)

Here q = 1/(λ + x2)2 is a nonlinear function of the eigen-parameter λ.
When we apply the SL(2, R) Lie-group shooting method to calculate the eigenvalues in a range of 0 < λ < 0.2, we can

see that the curve of y(1) is intersectedwith the zero line at ten points as shown in Fig. 8, of which the number of eigenvalues
is coincident with that obtained in [24,25].

5.6. Example 8

Finally, we consider an example of the mixed-type eigen-parameter dependent boundary conditions:

y′′(x) + λy(x) = 0, 0 < x < 1, (57)

y(0) = 0, y′(0) +
√

λy(1) + e
√

λy′(1) = 0. (58)

When we apply the SL(2, R) Lie-group shooting method to calculate the eigenvalues in a range of 0 < λ < 210, we
can see that the curve of sgn(Z) is intersected with the zero line at five points as shown in Fig. 9, of which the number of
eigenvalues is coincident with that obtained from the following characteristic equation:

f (λ) = 1 + sin
√

λ + e
√

λ cos
√

λ = 0, (59)

which is derived fromEq. (42). This example shows again the power of the presentmethod to compute the exact eigenvalues
for a problem with general non-separated eigen-parameter dependent boundary conditions.
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Fig. 8. For Example 7 displaying the eigenvalue curve.

a

b

Fig. 9. For Example 8 displaying the eigenvalue curve.
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6. Conclusions

A new Lie-group shooting method based on the Lie-group SL(2, R) was developed in this paper, which can be used to
compute the eigenvalues of the generalized Sturm–Liouville problems. The theoretical foundation based on the Lie-group
SL(2, R) and the closure property are proven.When the eigenvalueswere available, we can also apply the Lie-group shooting
method to compute the eigenfunctions. The key point is relied on the derived closed-form formulas for expressing the
unknown boundary values in terms of λ. Several numerical examples were given to confirm the efficiency and accuracy of
the present SL(2, R) Lie-group shooting method, which is much easy to be numerically implemented with a very low cost.
Moreover, the accuracy of the derived closed-form formulas to compute eigenvalues is confirmed.
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Appendix

In this appendix we derive Eqs. (21) and (22). Finding G, which is corresponding to the constant matrix A in Eq. (20), is
equivalent to find the transition matrix for the following two first-order ordinary differential equations:

w′(x) = c1z(x), z ′(x) = c2w(x). (A.1)

It follows that

w′′(x) = c1z ′(x) = c1c2w(x) = κw(x). (A.2)

If κ = c1c2 < 0, through some elementary operations we can find

G(x) =

 cos
√

−κ(x − x0)
 c1

√
−κ

sin
√

−κ(x − x0)


−

√
−κ

c1
sin
√

−κ(x − x0)


cos
√

−κ(x − x0)


 . (A.3)

It can be seen that G(x) satisfies the governing equation G′(x) = AG(x) and G(x0) = I2. By taking c1 = 1/p(x̂), c2 =

−p(x̂)b(x̂), κ = −b(x̂) < 0 and x = xf , from Eq. (A.3) we can derive Eq. (21).
Similarly, if κ = c1c2 > 0 we can find

G(x) =

 cosh
√

κ(x − x0)
 c1

√
κ
sinh

√
κ(x − x0)


√

κ

c1
sinh

√
κ(x − x0)


cosh

√
κ(x − x0)


 . (A.4)

By using c1 = 1/p(x̂), c2 = −p(x̂)b(x̂), κ = −b(x̂) > 0 and x = xf , from Eq. (A.4) we can derive Eq. (22).
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