期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:284
Sobolev orthogonal polynomials on product domains
Article
Fernandez, Lidia1  Marcellan, Francisco2,3  Perez, Teresa E.1  Pinar, Miguel A.1  Xu, Yuan4 
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
[2] Inst Ciencias Matemat ICMAT, Madrid, Spain
[3] Univ Carlos III Madrid, Dept Matemat, E-28903 Getafe, Spain
[4] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词: Classical orthogonal polynomials;    Orthogonal polynomials in two variables;    Sobolev inner products;    Product domain;   
DOI  :  10.1016/j.cam.2014.09.015
来源: Elsevier
PDF
【 摘 要 】

Orthogonal polynomials on the product domain [a(1), b(1)] x [a(2), b(2)] with respect to the inner product < f, g >(s) = integral(b1)(a1) integral(b2)(a2) del f(x, y) center dot del g(x, y) w(1)(x)w(2)(y) dx dy +lambda f(c(1), c(2))g(c(1), c(2)) are constructed, where w(i) is a weight function on [a(i), b(i)] for i = 1, 2, lambda > 0, and (c(1), c(2)) is a fixed point. The main result shows how an orthogonal basis for such an inner product can be constructed for certain weight functions, in particular, for product Laguerre and product Gegenbauer weight functions, which serve as primary examples. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2014_09_015.pdf 392KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次