期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:345
Model recovery for Hammerstein systems using the hierarchical orthogonal matching pursuit method
Article
Wang, Dongqing1,3  Yan, Yaru1  Liu, Yanjun2  Ding, Junhang1,3 
[1] Qingdao Univ, Coll Automat & Elect Engn, Qingdao 266071, Peoples R China
[2] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[3] Collaborat Innovat Ctr Ecotext Shandong Prov, Qingdao 266071, Peoples R China
关键词: Hierarchical identification principle;    Hammerstein system;    Orthogonal matching pursuit (OMP);    Compressed sensing (CS);    Parameter estimation;   
DOI  :  10.1016/j.cam.2018.06.016
来源: Elsevier
PDF
【 摘 要 】

Most papers concentrate on the parameter identification of Hammerstein systems with known orders. This paper, motivated by the recent developments in sparse approximations, investigates the combined parameter and order determination of Hammerstein systems. The methodology used relies on greedy schemes-the orthogonal matching pursuit (OMP) algorithm in the compressive sensor (CS) theory. In particular, the first step recasts a bilinear Hammerstein system into two fictitious pseudo-regressive sub-systems which respectively contain the parameters of the nonlinear part or the parameters of the linear part by the hierarchical identification principle. The second step adopts a hierarchical orthogonal matching pursuit (H-OMP) selection procedure to interactively select the parameters and orders of the two sub-systems under the frame of the compressive sensor. Finally, the proposed algorithm is tested on a simulation example. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2018_06_016.pdf 379KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次