期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:234
A note on Solodov and Tseng's methods for maximal monotone mappings
Article
Zhao, Jinling1  Yang, Qingzhi2,3  Gao, Hongxiu4 
[1] Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China
[2] Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Qingdao Technol Univ, Sch Sci, Qingdao 266520, Peoples R China
关键词: Maximal monotone;    Proximal point algorithm;    Forward backward splitting method;    Orthogonal projection;    Relaxation;   
DOI  :  10.1016/j.cam.2010.02.032
来源: Elsevier
PDF
【 摘 要 】

This paper considers the problem of finding a zero of the sum of a single-valued Lipschitz continuous mapping A and a maximal monotone mapping B in a closed convex set C. We first give some projection-type methods and extend a modified projection method proposed by Solodov and Tseng for the special case of B = N(c) to this problem, then we give a refinement of Tseng's method that replaces P(c) by P(ck). Finally, convergence of these methods is established. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2010_02_032.pdf 259KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次