期刊论文详细信息
Fixexd point theory and applications
Iterative algorithms for solutions of Hammerstein equations in real Banach spaces
article
Chidume, Charles E.1  Adamu, Abubakar1  Okereke, Lois C.1 
[1] African University of Science and Technology
关键词: Fixed point;    Maximal monotone;    Uniformly smooth;    Uniformly convex;    Hammerstein;    Quasi-bounded;   
DOI  :  10.1186/s13663-020-0670-7
来源: SpringerOpen
PDF
【 摘 要 】

Let B be a uniformly convex and uniformly smooth real Banach space with dual space $B^{*}$. Let $F:B\to B^{*}$, $K:B^{*} \to B$ be maximal monotone mappings. An iterative algorithm is constructed and the sequence of the algorithm is proved to converge strongly to a solution of the Hammerstein equation $u+KFu=0$. This theorem is a significant improvement of some important recent results which were proved in real Hilbert spaces under the assumption that F and K are maximal monotone continuous and bounded. The continuity and boundedness restrictions on K and F have been dispensed with, using our new method, even in the more general setting considered in our theorems. Finally, numerical experiments are presented to illustrate the convergence of the sequence of our algorithm.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202108090000128ZK.pdf 1548KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次