期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:374
A smoothing iterative method for the finite minimax problem
Article
Liu, J. K.1,2  Zheng, L.3 
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Tech, Macau, Peoples R China
关键词: Minimax problem;    Smoothing method;    Conjugate gradient method;    Global convergence;   
DOI  :  10.1016/j.cam.2020.112741
来源: Elsevier
PDF
【 摘 要 】

In this paper, we proposed a smoothing iterative method to solve the finite minimax problems based on the exponential penalty function of Kort and Bertsekas (1972). This approach can be viewed as the extension of one conjugate gradient method. Under suitable conditions, the proposed method is globally convergent. Preliminary numerical results and comparisons show that the proposed method is effective and promising. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_112741.pdf 372KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次