期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:224
A new family of conjugate gradient methods
Article
Shi, Zhen-Jun1,2  Guo, Jinhua1 
[1] Univ Michigan, Dept Comp & Informat Sci, Dearborn, MI 48128 USA
[2] Qufu Normal Univ, Coll Operat Res & Management, Rizhao 276826, Shandong, Peoples R China
关键词: Unconstrained optimization;    Conjugate gradient method;    Global convergence;   
DOI  :  10.1016/j.cam.2008.05.012
来源: Elsevier
PDF
【 摘 要 】

In this paper we develop a new class of conjugate gradient methods for unconstrained optimization problems. A new nonmonotone line search technique is proposed to guarantee the global convergence of these conjugate gradient methods under some mild conditions. In particular, Polak-Ribiere-Polyak and Liu-Storey conjugate gradient methods are special cases of the new class of conjugate gradient methods. By estimating the local Lipschitz constant of the derivative of objective functions, we can find an adequate step size and substantially decrease the function evaluations at each iteration. Numerical results show that these new conjugate gradient methods are effective in minimizing large-scale non-convex non-quadratic functions. (c) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_05_012.pdf 660KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次