期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:321
Steklov approximations of harmonic boundary value problems on planar regions
Article
Auchmuty, Giles1  Cho, Manki2 
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
关键词: Harmonic functions;    Steklov eigenfunctions;    Boundary value problems;    Harmonic approximation;   
DOI  :  10.1016/j.cam.2017.02.034
来源: Elsevier
PDF
【 摘 要 】

Error estimates for approximations of solutions of Laplace's equation with Dirichlet, Robin or Neumann boundary value conditions are described. The solutions are represented by orthogonal series using the harmonic Steklov eigenfunctions. Error bounds for partial sums involving the lowest eigenfunctions are found. When the region is a rectangle, explicit formulae for the Steklov eigenfunctions and eigenvalues are known. These were used to find approximations for problems with known explicit solutions. Results about the accuracy of these solutions, as a function of the number of eigenfunctions used, are given. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_02_034.pdf 1061KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次