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Error estimates for approximations of solutions of Laplace’s equation with Dirichlet, Robin
or Neumann boundary value conditions are described. The solutions are represented by
orthogonal series using the harmonic Steklov eigenfunctions. Error bounds for partial sums
involving the lowest eigenfunctions are found. When the region is a rectangle, explicit
formulae for the Steklov eigenfunctions and eigenvalues are known. These were used
to find approximations for problems with known explicit solutions. Results about the
accuracy of these solutions, as a function of the number of eigenfunctions used, are given.
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1. Introduction

This paper treats the approximation of solutions of Laplace’s equations using harmonic Steklov eigenfunctions. The
problems are posed on bounded planar regions Ω and the functions should satisfy either Dirichlet, Robin or Neumann
boundary conditions

u = g or Dνu + b u = g on ∂Ω. (1.1)

Here ν is the outward unit normal and b ≥ 0 is a constant.
Results about orthogonal bases of the class of all finite energy harmonic functionsH(Ω) ⊂ H1(Ω) consisting of harmonic

Steklov eigenfunctions are summarized below in Section 3. These functions have the property that they generate a basis of
H(Ω) and their boundary traces provide orthogonal bases of L2(∂Ω, dσ) and H1/2(∂Ω). This spectral theory of trace spaces
is described in Auchmuty [1]. Here some results obtained in the computational approximation of harmonic functions using
Steklov eigenfunctions associatedwith the lowest Steklov eigenvalues will be described. General results and error estimates
for approximations are described in Sections 4 and 6. Computational results for some problems with exact solutions are
described in Sections 5 and 7. The explicit formulae for the Steklov eigenvalues and eigenfunctions on rectangles of aspect
ratio h > 0 are used here. For similar problems on general regions, further errors are introduced when approximations of
the Steklov eigenfunctions and eigenvalues are used.

Existence–uniqueness theorems for these problems may be found in most texts that treat elliptic boundary value
problems. From Weyl’s lemma, the solutions are C∞ on the region Ω . Under various assumptions on g, Ω and ∂Ω the
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solutions will be in specific Banach or Hilbert spaces of functions on Ω or Ω . For an excellent review of classical results
about these problems see chapter 2 by Benilan in [2]. A function u ∈ L1(Ω) is said to be an ultraweak solution of Laplace’s
equation provided it obeys

Ω

u ∆ ϕ dxdy = 0 for all ϕ ∈ C∞

c (Ω). (1.2)

Such an ultraweak solution is a classical solution of Laplace’s equation provided it is equivalent to a continuous function on
Ω . There are classical, and other ultraweak, harmonic functions that are not in the standard Sobolev space H1(Ω) — even
when Ω is a disk.

General results about Steklov approximations of harmonic functions are described in Sections 3, 4 and 6. An algorithm
for constructing a basis of the subspace of harmonic functions in H1(Ω) consisting of harmonic Steklov eigenfunctions. is
described in Auchmuty [1,3]. It requires the solution of a sequence of constrained variational principles. The boundary traces
of these eigenfunctions are L2-orthogonal on the boundary and are proved to be bases of a scale of Hilbert spaces of functions
on ∂Ω . In Sections 4 and 6 various error estimates for Steklov approximations are obtained.

When the region is a planar disk, the Steklov eigenfunctions are the usual harmonic functions rm cosmθ, rm sinmθ of
Fourier analysis and the question of the approximation of harmonic functions on the unit disc by harmonic polynomials has
a huge literature. The text of Axler, Bourdon and Ramey [4] is a recent introduction to the theory.

Here attention will be on the case where the region is a rectangle. In this case, the Steklov eigenfunctions are known
explicitly see Auchmuty and Cho [5] or Girouard and Polterovich [6] where a completeness proof for this family is given.
Computational results for Steklov approximations of certain harmonic functions regarded as solutions of Laplace’s equations
with various boundary value conditions are described in Sections 5 and 7. Dirichlet problems are considered in Sections 4
and 5 while results for Robin and Neumann problems are described in Sections 6 and 7.

For general regions, the Steklov eigenvalues and eigenfunctions are not (yet) known explicitly. However a number of
authors have studied the numerical determination of these eigenfunctions including Cheng, Lin and Zhang [7], and Kloucek,
Sorensen andWightman [8]. The software FreeFem++ [9] has subroutines for the computation of Steklov eigenfunctions and
eigenvalues that was used for confirmation of some of the analytical results described here.

Our general conclusion is that many harmonic functions are well-approximated by Steklov expansions with a relatively
small number of Steklov eigenfunctions. They appear to provide very good approximations in the interior of the region and
become quite oscillatory close to, and on, the boundary. It should be noted that this analysis extends to the solution of more
general self-adjoint second order elliptic equations of the form Lu = 0 using similar general constructions as described in
the paper [10].

2. Assumptions and notation

This paper treats various Laplacian boundary value problems on regions Ω in the plane R2. A region is a non-empty,
connected, open subset ofR2. Its closure is denotedΩ and its boundary is ∂Ω := Ω\Ω . Some regularity of the boundary ∂Ω

is required. Each component (= maximal connected closed subset) of the boundary is assumed to be a Lipschitz continuous
closed curve. Let σ denote arc-length along a curve so the unit outward normal ν(z) is defined σ a.e.

Lp(Ω) and Lp(∂Ω, dσ), 1 ≤ p ≤ ∞ are the usual spaces with p-norm denoted by ∥u∥p or ∥u∥p,∂Ω respectively. When
p = 2 these are real Hilbert spaces with inner products defined by

⟨u, v⟩ :=


Ω

u v dxdy and ⟨u, v⟩∂Ω := |∂Ω|
−1


∂Ω

u v dσ .

C(Ω) is the space of continuous functions on the closure Ω of Ω with the sup norm ∥u∥b := supΩ |u(x, y)|.
The weak jth derivative of u is Dju — and all derivatives will be taken in a weak sense. Then ∇u := (D1u,D2u) is the

gradient of u and H1(Ω) is the usual real Sobolev space of functions on Ω . It is a real Hilbert space under the standard
H1-inner product

[u, v]1 :=


Ω

[u v + ∇u · ∇v] dxdy. (2.1)

The corresponding norm is denoted ∥u∥1,2.
The region Ω is said to satisfy Rellich’s theorem provided the imbedding of H1(Ω) into Lp(Ω) is compact for 1 ≤ p < ∞.
The boundary trace operator γ : H1(Ω) → L2(∂Ω, dσ) is the linear extension of the map restricting Lipschitz

continuous functions on Ω to ∂Ω . The region Ω is said to satisfy a compact trace theorem provided the boundary trace
mapping γ : H1(Ω) → L2(∂Ω, dσ) is compact. Theorem 1.5.1.10 of Grisvard [11] proves an inequality that implies the
compact trace theorem for bounded regions in RN with Lipschitz boundaries. Usually γ is omitted so u is used in place of
γ (u) for the trace of a function on ∂Ω .

The Gauss–Green theorem holds on Ω provided
Ω

uDjv dxdy =


∂Ω

γ (u) γ (v) νj dσ −


Ω

v Dju dxdy for 1 ≤ j ≤ N (2.2)

for all u, v in H1(Ω). The requirements on the region will be
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Condition (B1): Ω is a bounded region in R2 whose boundary ∂Ω is a finite number of disjoint closed Lipschitz curves, each of
finite length and such that the Gauss–Green, Rellich and compact trace theorems hold.

We will use the equivalent inner products on H1(Ω) defined by

[u, v]∂ :=


Ω

∇u · ∇v dxdy +


∂Ω

u v dσ . (2.3)

The corresponding normwill be denoted by ∥u∥∂ . The proof that this norm is equivalent to the usual (1, 2)-norm on H1(Ω)
when (B1) holds is Corollary 6.2 of [10] and also is part of Theorem 21A of [12].

A function u ∈ C(Ω) or H1(Ω) is said to be harmonic provided it satisfies (1.2). Define H(Ω) to be the space of all
harmonic functions in H1(Ω). When (B1) holds, the closure of C1

c (Ω) in the H1-norm is the usual Sobolev space H1
0 (Ω).

Then (1.2) is equivalent to saying that H(Ω) is ∂-orthogonal to H1
0 (Ω). This may be expressed as

H1(Ω) = H1
0 (Ω) ⊕∂ H(Ω), (2.4)

where ⊕∂ indicates that this is a ∂-orthogonal decomposition.
The analysis to be describedhere is based on the construction of a ∂-orthogonal basis of theHilbert spaceH(Ω) consisting

of harmonic Steklov eigenfunctions. In particular we shall prove results about the approximation of solutions of harmonic
boundary value problems by such eigenfunctions.

3. Steklov representations of solutions of harmonic boundary value problems

Let Ω be a bounded region in R2 that satisfies (B1). A non-zero function s ∈ H1(Ω) is said to be a harmonic Steklov
eigenfunction on Ω corresponding to the Steklov eigenvalue δ provided s satisfies

Ω

∇s · ∇v dxdy = δ ⟨s, v⟩∂Ω = δ |∂Ω|
−1


∂Ω

s v dσ . for all v ∈ H1(Ω). (3.1)

This is the weak form of the boundary value problem

∆ s = 0 on Ω with Dν s = δ |∂Ω|
−1 s on ∂Ω. (3.2)

Here ∆ is the Laplacian and Dν s := ∇s · ν is the unit outward normal derivative of s at a point on the boundary.
Descriptions of the analysis of these eigenproblems may be found in Auchmuty [10,1,3,13]. These eigenvalues and a

corresponding family of ∂-orthonormal eigenfunctions may be found using variational principles as described in Sections 6
and 7 of Auchmuty [10]. δ0 = 0 is the least eigenvalue of this problem corresponding to the eigenfunction s0(x) ≡ 1 on
Ω . This eigenvalue is simple as Ω is connected. Let the first k Steklov eigenvalues be 0 = δ0 < δ1 ≤ δ2 ≤ · · · ≤ δk−1 and
s0, s1, . . . , sk−1 be a corresponding set of ∂-orthonormal eigenfunctions. The kth eigenfunction sk will be a maximizer of the
functional

B(u) :=


∂Ω

|γ (u)|2 dσ , (3.3)

over the subset Bk of functions in H1(Ω) which satisfy

∥u∥∂ ≤ 1 and ⟨γ (u), γ (sl) ⟩∂Ω = 0 for 0 ≤ l ≤ k − 1. (3.4)

The existence and some properties of such eigenfunctions are described in Sections 6 and 7 of [10] for a more general
system. In particular, that analysis shows that each δj is of finite multiplicity and δj → ∞ as j → ∞; see Theorem 7.2
of [10]. The maximizers not only are ∂-orthonormal but they also satisfy

Ω

∇sk · ∇sl dxdy = |∂Ω|
−1


∂Ω

sk sl dσ = 0 for k ≠ l. (3.5)
Ω

|∇sk|2 dxdy =
δk

1 + δk
and |∂Ω|

−1


∂Ω

|γ (sk)|2 dσ =
1

1 + δk
for k ≥ 0. (3.6)

Recently Daners [14, Corollary 4.3] has shown that, when Ω is a Lipschitz domain, then the Steklov eigenfunctions are
continuous on Ω .

The analysis in this paper is based on the fact that harmonic Steklov eigenfunctions on Ω can be chosen to be orthogonal
bases of both H(Ω) and of L2(∂Ω, dσ). It should be noted that, for regions other than discs (or balls in higher dimensions),
these Steklov eigenfunctions are generally not L2-orthogonal on Ω .

Let S := {sj : j ≥ 0} be the maximal family of ∂-orthonormal eigenfunctions constructed inductively as above. For this
paper, it is more convenient to use the Steklov eigenfunctions normalized by their boundary norms.
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Define the functions s̃j :=

1 + δj sj for j ≥ 0. From (3.6), these satisfy

∂Ω

s̃j s̃k dσ = 0 when j ≠ k and


∂Ω

s̃j
2 dσ = |∂Ω|. (3.7)

These Steklov eigenfunctions are said to be boundary normalized and the associated set S̃ := {s̃j : j ≥ 0} is an orthonormal
basis of L2(∂Ω, dσ). See Theorem 4.1 of [1].

For given g ∈ L2(∂Ω, dσ), let

gM(x, y) := g +

M
j=1

ĝj s̃j(x, y) with ĝj = ⟨g, s̃j⟩∂Ω (3.8)

be the Mth Steklov approximation of g on ∂Ω . Here g := g0 is the mean value of g on ∂Ω and gj is called the jth Steklov
coefficient of g . This is a standard approximation of an element in an L2 space with respect to this orthonormal basis.
Note that each gM is continuous and bounded on ∂Ω as each s̃j is, and gM converges strongly to g in L2(∂Ω, dσ) from
the Riesz–Fischer theorem and

∥ g − gM ∥
2
2,∂Ω = ∥ g ∥

2
2,∂Ω − ∥ gM ∥

2
2,∂Ω . (3.9)

The unique solution of Laplace’s equation on Ω subject to the Dirichlet boundary condition γ (u) = g on ∂Ω is given by

u(x, y) = EHg(x, y) = g + lim
M→∞

M
j=1

ĝjs̃j(x, y) for (x, y) ∈ Ω. (3.10)

See Section 6 of [3] for a proof; the limit here is in the L2 norm on Ω when g is L2. EH will be called the harmonic extension
operator and is a compact linear map from L2(∂Ω, dσ) to L2(Ω). Classically this map has been represented as an integral
operator with the Poisson kernel. Theorem 6.3 of [3] says that EH is an isometric isomorphism of L2(∂Ω, dσ) with a space
denoted H1/2(Ω) that is a proper subspace of L2(Ω).

4. Error estimates for Steklov approximations

Let EH : L2(∂Ω, dσ) → L2(Ω) be the harmonic extension operator defined by (3.10). An old result of G. Fichera [15]
says that there is a constant C2 > 0 such that

∥ EH g ∥2,Ω ≤ C2 ∥ g ∥2,∂Ω for all g ∈ L2(∂Ω, dσ). (4.1)

Fichera identified C2 as being related to the first eigenvalue of the Dirichlet Biharmonic Steklov eigenproblem on the region
Ω . Recently Auchmuty [16] extended this result in a number of ways, including a description of the boundary regularity
required for it to hold.

C2 will be called the Fichera constant and (4.1) the Fichera inequality. Henceforth the region Ω is assumed (B2): to be
sufficiently regular that (B1) and (4.1) hold.

From the Perron construction, it is known that EH : C(∂Ω) → C(Ω) is continuous and the maximum principle implies
that

∥ EH g ∥∞,Ω ≤ ∥ g ∥∞,∂Ω for all g ∈ C(∂Ω). (4.2)

These two inequalities may be combined to yield the following

Lemma 4.1. Assume that Ω satisfies (B2) and p ∈ [2, ∞]. Then EH : Lp(∂Ω, dσ) → Lp(Ω) is a continuous linear
transformation and

∥ EH g ∥p,Ω ≤ (C2)
2/p

∥ g ∥p,∂Ω for all g ∈ Lp(∂Ω). (4.3)

Proof. This inequality is a direct consequence of (4.1), (4.2) and the Riesz Thorin interpolation theorem. �

It is worth noting that these three inequalities are equivalent to coercivity inequalities for the trace operator on weakly
harmonic functions. Namely if u ∈ C(Ω) satisfies (1.2) and p ∈ [2, ∞], then

∥ γ (u) ∥p,∂Ω ≥ (C2)
−2/p

∥ u ∥p,Ω . (4.4)

This holds as γ (EH) is the identity operator on Lp(∂Ω).
In addition to these Lp bounds, there are gradient bounds for our Steklov approximations as summarized in the following

result.
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Theorem 4.2. Assume (B1) and g ∈ H1/2(∂Ω), gM is defined by (3.8), u = EHg and uM = EHgM . Then gM converges strongly
to g in H1/2(∂Ω) and uM converges uniformly to u on compact subsets of Ω . Moreover

∥∇(u − uM) ∥
2
2,Ω =

∞
j=M+1

δjĝ2
j = ∥g∥2

1/2,∂Ω − ∥gM∥
2
1/2,∂Ω . (4.5)

Proof. The fact that gM converges strongly to g in H1/2(∂Ω) and H1(Ω) follows from the fact that S is an orthonormal basis
of H(Ω). The proof of uniform convergence is standard, while (4.5) follows from the orthogonality properties of Steklov
eigenfunctions. �

Also note that the Steklov eigenfunction have scaling properties. Given Ω1 ⊂ R2, let ΩL := {Lx : x ∈ Ω1} with
L > 0. When s is a harmonic function on Ω1, then the function sL(y) := s(y/L) will be a harmonic function on ΩL. If s is a
harmonic Steklov eigenfunction on Ω1 with Steklov eigenvalue δ, then sL will be a harmonic Steklov eigenfunction on ΩL
with the Steklov eigenvalue δ/L. Thus it suffices to study problems with a normalized bounded region Ω1; the eigenvalues
and eigenfunctions for scalings of a region then follow from these formulae.

The following sections will look at some aspects of the approximation of solutions of Laplace’s equation on rectangles by
finite sums of the form (3.10). Rectangles are chosen since we have explicit expressions for the Steklov eigenfunctions and
eigenvalues on rectangles.

5. Steklov approximations of harmonic functions on a rectangle

When Ω = Rh := (−1, 1) × (−h, h) is a rectangle with aspect ratio h, the Steklov eigenfunctions and eigenvalues
are known explicitly. See Auchmuty and Cho [5, Section 4] where eight families of eigenfunctions are described and
characterized by their symmetry properties with respect to the center. Class I eigenfunctions are even in x and y, class II
are odd in x and y, class III are even in x and odd in y, class IV are odd in x and even in y.

By separation of variables the explicit formulae for the Steklov eigenfunctions may be found. The first eigenfunction
s0(x, y) ≡ 1 is in class I and the other (unnormalized) Steklov eigenfunctions have the forms

s(x, y) := cosh νx cos νy when tan νh + tanh ν = 0, (5.1)
s(x, y) := cos νx cosh νy when tan ν + tanh νh = 0. (5.2)

When h = 1, the first eigenfunction in class II is s3(x, y) = xy. Otherwise the (unnormalized) eigenfunctions and
eigenvalues in this class have the forms

s(x, y) := sinh νx sin νy when cot νh − coth ν = 0, (5.3)
s(x, y) := sin νx sinh νy when cot ν − coth νh = 0. (5.4)

Similarly eigenfunctions in class III have the forms

s(x, y) := cosh νx sin νy when cot νh − tanh ν = 0, (5.5)
s(x, y) := cos νx sinh νy when tan ν + coth νh = 0. (5.6)

Finally the eigenfunctions in class IV have the forms

s(x, y) := sinh νx cos νy when tan νh + coth ν = 0, (5.7)
s(x, y) := sin νx cosh νy when cot ν − tanh νh = 0. (5.8)



G. Auchmuty, M. Cho / Journal of Computational and Applied Mathematics 321 (2017) 302–313 307

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80
k

S
te

kl
ov

 e
ig

en
va

lu
e,

 δ k

h=1
h=0.8
h=0.5

Fig. 1. First 80 Steklov eigenvalues on Rh corresponding to h = 1, 0.8, and 0.5.

Table 1
g(x, y) = f1(x, y) and h = 1.

P1 P2 P3 P4 P5

M = 2 −2.626748 0.694643 −0.844238 0.230283 −0.249859
M = 3 −2.625942 0.607979 −0.842944 0.225907 −0.249983
M = 5 −2.624712 0.607588 −0.843208 0.226837 −0.250000
g(x, y) −2.624400 0.607600 −0.843200 0.226800 −0.250000
D2(x, y) 0.002348 0.002957 0.001038 0.003483 0.000141
D3(x, y) 0.001542 0.000379 0.000256 0.000893 0.000017
D5(x, y) 0.000312 0.000012 0.000008 0.000037 0

The associated Steklov eigenvalues, δ are given by the following formulae and the first 80 eigenvalues for different aspect
ratios are graphed in Fig. 1.

(i) δ = ν tanh ν when ν is a solution of the equation in (5.1) or (5.5).
(ii) δ = ν tanh νh when ν is a solution of the equation in (5.2) or (5.8).
(iii) δ = ν coth ν when ν is a solution of the equation in (5.3) or (5.7).
(iv) δ = ν coth νh when ν is a solution of the equation in (5.4) or (5.6).

Knowing these explicit formulae for the eigenvalues and eigenfunctions the approximations of some given harmonic
functions using relatively few harmonic Steklov eigenfunctions will be computed. Since there are eight families of
harmonic Steklov eigenfunctions associated with different even/odd symmetries about the center we have concentrated
on approximations involving the first 8M eigenfunctions withM = 2, 3 and 5.

Note that the convergence results for the Steklov series expansions hold only when the coefficients are precisely the
Steklov coefficients ĝj defined by (3.8). The value of u is the mean value of the integral of g around ∂Ω . However the
approximation results of Section 4 hold quite generally for any choice of coefficients.

For the following calculations the coefficients were obtained by evaluating the boundary integrals ĝj of (3.8) using the
global adaptive quadrature (MATLAB’s integral). The absolute and relative error tolerance are 10−10 and 10−6, respectively.
Then theMth Steklov approximation uM is the function defined by uM = EHgM with ûj = ĝj.

Tables 1–3 illustrate the pointwise approximations obtained for these sums at the points P1 = (0.9, 0.9), P2 =

(0.9, 0.1), P3 = (0.8, 0.6), P4 = (0.3, 0.9), P5 = (0.5, 0.5) and for M = 2,3, 5 and the exact results to 6 decimal places. Let
DM(x, y) := |g(x, y) − gM(x, y)| be the absolute error at (x, y). Also let f1(x, y) := x4 − 6x2y2 + y4, f2(x, y) :=

2−x
(2−x)2+y2

, and

f3(x, y) := ln(


(x − 3)2 + (y − 3)2). Tables 4–9 give the relative errors found for these approximations.
Let rerr∞(g) :=

∥g−gM∥∞,∂Ω

∥g∥∞,∂Ω
and rerr2(g) :=

∥g−gM∥2,∂Ω

∥g∥2,∂Ω
be the relative error ofMth Steklov approximation of g in L∞(Ω)

norm and L2(∂Ω, dσ), respectively.
It was observed that the above approximations were improved when some preliminary processing was performed. In

particular it was worthwhile to first find the coefficients aj for a function g0(x, y) = a0 + a1x+ a2y+ a3xy that interpolated
the boundary data at the 4 corners of the rectangle. Then the Steklov approximations of solutions of Laplace’s equation
subject to the reduced boundary condition g1(z) := g(z)−g0(z) for z ∈ ∂Ω were observed to be better (have smaller error)
than those for the boundary data g .

Table 10 shows the comparison of relative errors of Steklov approximations of f1 and f1+4. Note that f1+4 is the reduced
boundary condition of f1 such that the value of the function at the 4 corners of R1 is zero.
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Table 2
g(x, y) = f2(x, y) and h = 1.

P1 P2 P3 P4 P5

M = 2 0.544285 0.899505 0.666815 0.455438 0.600096
M = 3 0.544745 0.902138 0.667202 0.460368 0.599985
M = 5 0.544675 0.901609 0.666636 0.459219 0.600000
g(x, y) 0.544554 0.901639 0.666667 0.459459 0.600000
D2(x, y) 0.000269 0.002135 0.000148 0.004021 0.000096
D3(x, y) 0.000191 0.000498 0.000535 0.000909 0.000015
D5(x, y) 0.000121 0.000030 0.000031 0.000240 0

Table 3
g(x, y) = f3(x, y) and h = 1.

P1 P2 P3 P4 P5

M = 2 1.088867 1.277069 1.179619 1.230746 1.262756
M = 3 1.088349 1.274927 1.180394 1.229961 1.262881
M = 5 1.088384 1.275412 1.180439 1.229874 1.262864
g(x, y) 1.088511 1.275503 1.180427 1.229794 1.262864
D2(x, y) 0.000356 0.001566 0.000808 0.000952 0.000108
D3(x, y) 0.000162 0.000576 0.000033 0.000167 0.000017
D5(x, y) 0.000127 0.000091 0.000012 0.000080 0

Table 4
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 1.

rerr∞(f1) rerr∞(f2) rerr∞(f3)

M = 2 6.59553 × 10−3 1.82382 × 10−2 6.48245× 10−3

M = 3 2.28748 × 10−3 1.21554 × 10−2 4.3219 × 10−3

M = 5 5.55757 × 10−4 7.35222 × 10−3 2.59338× 10−3

Table 5
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 0.8.

rerr∞(f1) rerr∞(f2) rerr∞(f3)

M = 2 4.82556 × 10−2 2.46749 × 10−2 6.38229× 10−3

M = 3 4.20662 × 10−2 1.78505 × 10−2 4.18945× 10−3

M = 5 2.28023 × 10−2 1.0105 × 10−2 2.47618× 10−3

Table 6
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 0.5.

rerr∞(f1) rerr∞(f2) rerr∞(f3)

M = 2 2.09505 × 10−1 3.40908 × 10−2 5.58445× 10−3

M = 3 1.12233 × 10−1 2.00031 × 10−2 3.84456× 10−3

M = 5 7.66842 × 10−2 1.29479 × 10−2 2.24773× 10−3

Table 7
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 1.

rerr2(f1) rerr2(f2) rerr2(f3)

M = 2 5.22051 × 10−3 1.30532 × 10−2 2.9694 × 10−3

M = 3 1.57535 × 10−3 7.2083 × 10−3 1.62779× 10−3

M = 5 3.1167 × 10−4 3.43748 × 10−3 7.59478× 10−4

Table 8
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 0.8.

rerr2(f1) rerr2(f2) rerr2(f3)

M = 2 5.13497 × 10−2 1.69181 × 10−2 2.77799× 10−3

M = 3 4.15782 × 10−2 1.0364 × 10−2 1.52184× 10−3

M = 5 1.78172 × 10−2 4.58322 × 10−3 6.98156× 10−4

In his thesis Cho [17, chapter 4], also investigated the approximation of harmonic functions by eigenfunctions of
the Neumann Laplacian on a rectangle. Even though such eigenfunctions form an orthogonal basis of H1(Ω), finite
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Table 9
Relative errors of the Steklov approximations of f1, f2 , and f3 , respectively where h = 0.5.

rerr2(f1) rerr2(f2) rerr2(f3)

M = 2 2.36676 × 10−1 2.14194 × 10−2 2.31158× 10−3

M = 3 1.00467 × 10−1 1.04072 × 10−2 1.3035 × 10−3

M = 5 5.79567 × 10−2 5.45324 × 10−3 5.9589 × 10−4

Table 10
Relative errors of Steklov approximations of f1 and f1 + 4 where h = 1.

rerr∞(f1) rerr∞(f1 + 4) rerr2(f1) rerr2(f1 + 4)

M = 2 6.59553 × 10−3 5.27642 × 10−3 5.22051 × 10−3 2.54632× 10−3

M = 3 2.28748 × 10−3 1.82998 × 10−3 1.57535 × 10−3 7.6838 × 10−4

M = 5 5.55757 × 10−4 4.46061 × 10−4 3.1167 × 10−4 1.52018× 10−4

approximations involving the first M eigenfunctions were found to provide poor approximation properties for harmonic
functions in H(Ω).

6. Approximations of solutions of Robin harmonic boundary value problems

When the first M harmonic Steklov eigenfunctions and eigenvalues are known, the associated Galerkin approximations
of Robin or Neumann boundary value problems for Laplace’s equations may be found. See Steinbach [18], chapter 8 or
Zeidler [12] chapter 19 for descriptions of such constructions and their general properties. Here some specific error analyses
for harmonic functions will be proved and some numerical results will be described in the next section.

A function u ∈ H(Ω) is said to be a (finite-energy) solution of the Robin harmonic boundary value problem on Ω

provided it satisfies
Ω

∇u · ∇v dxdy + b


∂Ω

u v dσ =


∂Ω

g v dσ for all v ∈ H1(Ω). (6.1)

When (B1) holds, standard variational arguments guarantee the existence and uniqueness of solutions of (6.1) in H(Ω).
The solution is denoted Eb g and satisfies the Robin boundary condition Dνu+bu = g on ∂Ω in a weak sense. For b > 0, it is

ũ(x, y) = Ebg(x, y) := lim
M→∞

M
j=0

ĝjs̃j(x, y)

b + δ̃j
for (x, y) ∈ Ω. (6.2)

Here δ̃j = δj/|∂Ω|. This limit exists in the H1-norm provided g ∈ H−1/2(∂Ω) as described in [3, Section 10]. In particular,
this holds when g ∈ L2(∂Ω, dσ); note that even for linear functions on a rectangle, the Robin or Neumann data g may be
discontinuous on the boundary so a useful analysis should allow such g .

When gM is given by (3.8), take v = s̃j in (6.1) to find that the solution is

uM(x, y) := Eb gM (x, y) =
g
b

+

M
j=1

ĝj
b + δ̃j

s̃j(x, y) on Ω. (6.3)

That is, after the Steklov spectrum has been found, the Mth Galerkin approximation of Ebg , just requires that the Steklov
coefficients ĝj := ⟨g, s̃j⟩∂Ω be evaluated as in (3.8).

The error estimate for these approximations is the following.

Theorem 6.1. Assume (B1) holds, b > 0, g ∈ L2(∂Ω, dσ) and gM is defined by (3.8). Then the function uM of (6.3) is in H(Ω)
and

∥Eb g − uM ∥
2
∂ ≤

1 + δM+1

(b + δM+1)2


∥g∥2

2,∂Ω − ∥gM∥
2
2,∂Ω


. (6.4)

Moreover the functions uM converge uniformly to Eb g on compact subsets of Ω .

Proof. From (6.2) and (6.3) one sees that

Eb g(x, y) − Eb gM(x, y) =

∞
j=M+1

ĝj
b + δ̃j

s̃j(x, y) on Ω.
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Evaluating the ∂-norm of this yields, using the orthogonality of the eigenfunctions, that

∥ Eb g − Eb gM ∥
2
∂ =

∞
j=M+1

ĝ2
j (1 + δj)

(b + δ̃j)2
.

Thus

∥ Eb g − Eb gM ∥
2
∂ ≤

1 + δM+1

(b + δ̂M+1)2
∥g − gM∥

2
2,∂Ω . (6.5)

Since δM increase to infinity, the coefficient here is bounded so Eb gM converges to Eb g in H1(Ω). This equation implies
(6.4) as the Steklov eigenfunctions are L2-orthogonal on ∂Ω . Again the uniform convergence on compact subsets of Ω is a
standard result for harmonic functions. �

The estimate in (6.4) shows again that H1 error bounds for Eb g on Ω may be found in terms of norms of g − gM on ∂Ω .
Some computational results for specific examples are described in the next section.

When the Neumann boundary condition (b = 0) holds then (6.2) holds provided g = 0 and the solution is unique up to
a constant. The minimum norm solution now is

ũ(x, y) = ENg(x, y) := lim
M→∞

M
j=1

ĝj
δj

s̃j(x, y) for (x, y) ∈ Ω. (6.6)

Let uM be this Mth partial sum, then uM converges to ENg in norm on H1(Ω) and EN is a continuous map of H−1/2(∂Ω) to
H(Ω). See Section 10 of [3] for more details.

The following error estimate for these approximations is proved using the same arguments as those for Theorem 6.1.

Theorem 6.2. Assume (B1) holds, g ∈ L2(∂Ω, dσ), g = 0 and gM is defined by (3.8). Then uM defined by (6.6) is in H(Ω) and

∥ENg − uM ∥
2
∂ ≤

1 + δM+1

δ2
M+1


∥g∥2

2,∂Ω − ∥gM∥
2
2,∂Ω


. (6.7)

Moreover the functions uM converge uniformly to Eb g on compact subsets of Ω .

7. Computation of solutions of Robin harmonic boundary value problems

The results of the preceding section provide representations of the solutions of Robin and Neumann problems for the
Laplacian in terms of the harmonic Steklov eigenproblems. Our observations are that approximations with relatively few
(16–40) Steklov eigenfunctions compared quite well with numerical solutions obtained using finite element software such
as FreeFem++ (see [9]).

Rather than comparing the results with such software, however, we will present some data about comparisons with
problems with exact solutions to illustrate the phenomenology observed. In particular we observed good approximations
away from the boundary and some difficulty in handling discontinuity in the data g at points of discontinuity — even when
the solution is nice. There is a Gibb’s type effect in this case.

Denote Γ1, Γ2, Γ3, and Γ4 to be the side with x = 1, y = h, x = −1, and y = −h, respectively such that ∂Ω =

Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

7.1. Neumann harmonic boundary value problem

Consider the boundary value problem on Ω = Rh

∆ u = 0 on Rh with Dν u = g on ∂Ω (7.1)

with Dirichlet data

g(x, y) =


+1 on Γ1 and Γ2
−1 on Γ3 and Γ4.

(7.2)

We note that this example has a unique solution u(x, y) = x + y with mean value zero on Rh. This solution is infinitely
differentiable but the boundary data g is discontinuous at (−1, h) and (1, −h) because the domain Rh has corners.

A graph of the numerical solution and of the error u − u5 of the solution withM = 5 is given in Fig. 2.
Another Neumann problem (7.1) on Ω = Rh used g

g(x, y) =


+2 on Γ1 and Γ3
−2h on Γ2 and Γ4.

(7.3)
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Table 11
Relative error of the Steklov approximation of the solution of (7.1) with the boundary
condition (7.2) where h = 1.

rerr∞(u) rerr2(u)

M = 2 3.44988 × 10−2 2.17341× 10−2

M = 3 2.34853 × 10−2 1.23794× 10−2

M = 5 1.43896 × 10−2 5.98271× 10−3

Table 12
Relative error of the Steklov approximation of the solution of (7.1) with the boundary
condition (7.3) where h = 1.

rerr∞(u) rerr2(u)

M = 2 9.07987 × 10−2 1.32590× 10−1

M = 3 5.34729 × 10−2 9.20000× 10−2

M = 5 2.64002 × 10−2 5.70258× 10−2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1

0.5 1
0.5

y
0

x
0

-0.5
-0.5

-1 -1

1

0.5 1
0.5

y
0

x
0

-0.5
-0.5

-1 -1

-0.02

-0.01

0

0.01

0.02

(a) Steklov approximation, u5 . (b) Error in the solution, u − u5 .

Fig. 2. Numerical results of the Steklov approximation of the solution of (7.1) with the boundary condition (7.2) where h = 1.

This problemhas a unique solution u(x, y) = x2−y2 withmean value zero on the rectangle. This solution is awell-known
saddle function but now the boundary data g is discontinuous at each corner. Tables 11 and 12 give some relative errors and
graphs of the Steklov approximation withM = 5 and the error u − u5 are provided in Fig. 3.

These simple examples show that the Steklov approximations of solutions of these problems provide quite good
approximations in the interior of the region even for small choices of M. The approximations satisfy themaximumprinciple,
so the solutions are less accurate at, or near, the boundary.

7.2. Robin harmonic boundary value problem

We consider a solution of the Robin harmonic boundary value problem with b = 1 on Rh,

∆ u = 0 on Rh with Dνu + bu = g on ∂Ω (7.4)

where g is given by

g(x, y) =


2(e1 sin(y)) on Γ1
ex(cos(h) + sin(h)) on Γ2
0 on Γ3
−ex(cos(h) + sin(h)) on Γ4.

(7.5)
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Fig. 3. Numerical results of the Steklov approximation of the solution of (7.1) with the boundary condition (7.3) where h = 1.
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Fig. 4. Numerical results of the Steklov approximation of the solution of (7.4) with the boundary condition (7.5) where h = 1.

The unique solution of this problem is u(x, y) = ex sin(y). The Steklov approximation with M = 5 is shown in Fig. 4,
together with a graph of the error function u − u5. Again the relative error is quite reasonable and the approximations are
very accurate away from the boundary (see Table 13).

These simple examples were chosen primarily to illustrate the phenomenology observed in computing Steklov
approximations. There clearly are many further questions about the efficacy of such approximations but the primary
observation is that low order Steklov approximations do provide good interior approximations to solutions of harmonic
boundary value problems.



G. Auchmuty, M. Cho / Journal of Computational and Applied Mathematics 321 (2017) 302–313 313

Table 13
Relative error of the Steklov approximation of the solution of (7.4) with the boundary
condition (7.5) where h = 1.

rerr∞(u) rerr2(u)

M = 2 1.51186 × 10−2 1.4854 × 10−2

M = 3 9.64123 × 10−3 7.84911× 10−3

M = 5 5.60122 × 10−3 3.53263× 10−3
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