期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:356
On penalty method for unilateral contact problem with non-monotone contact condition
Article
Han, Weimin1,2  Migorski, Stanislaw3,4  Sofonea, Mircea5 
[1] Univ Iowa, Program Appl Math & Computat Sci AMCS, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[4] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[5] Univ Perpignan, Lab Math & Phys, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, France
关键词: Unilateral contact problem;    Hemivariational inequality;    Penalty based numerical methods;    Convergence;   
DOI  :  10.1016/j.cam.2019.02.003
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider a penalty based numerical method to solve a model contact problem with unilateral constraint that is described by a constrained stationary hemivariational inequality. The penalty technique is applied to approximately enforce the constraint condition, and a corresponding numerical method using finite elements is introduced. We show the convergence of the penalty based numerical solutions to the solution of the constrained hemivariational inequality as both the mesh-size and the penalty parameter approach zero. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_02_003.pdf 361KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次