期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:364
ART: Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations
Article
Botchev, M. A.1  Knizhnerman, L. A.2 
[1] Russian Acad Sci, Keldysh Inst Appl Math, Miusskaya Sq 4, Moscow 125047, Russia
[2] Cent Geophys Expedit, Math Modelling Dept, Narodnogo Opolcheniya St,38,Bldg 3, Moscow 123298, Russia
关键词: Krylov subspace methods;    Exponential time integration;    Arnoldi method;    Krylov subspace restarting;    Shift-and-invert Krylov subspace methods;   
DOI  :  10.1016/j.cam.2019.06.027
来源: Elsevier
PDF
【 摘 要 】

In this paper a new restarting method for Krylov subspace matrix exponential evaluations is proposed. Since our restarting technique essentially employs the residual, some convergence results for the residual are given. We also discuss how the restart length can be adjusted after each restart cycle, which leads to an adaptive restarting procedure. Numerical tests are presented to compare our restarting with three other restarting methods. Some of the algorithms described in this paper are a part of the Octave/Matlab package expmARPACK available at http://team.kiam.ru/botchev/expm/. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2019_06_027.pdf 723KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次