期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:374
Convergence rate of multiscale finite element method for various boundary problems
Article
Ye, Changqing1,2  Dong, Hao3  Cui, Junzhi1 
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
关键词: Multiscale finite element method;    Boundary problems;    Hemivariational inequality;    Homogenization theory;    Numerical convergence rate;   
DOI  :  10.1016/j.cam.2020.112754
来源: Elsevier
PDF
【 摘 要 】

In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_112754.pdf 361KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次