期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:300
A new efficient conjugate gradient method for unconstrained optimization
Article
Fatemi, Masoud1,2 
[1] KN Toosi Univ Technol, Dept Math, Tehran, Iran
[2] KN Toosi Univ Technol, Sci Computat Optimizat & Syst Engn SCOPE, Tehran, Iran
关键词: Conjugate gradient method;    Dai-Liao family;    Unconstrained optimization;    Line search;   
DOI  :  10.1016/j.cam.2015.12.035
来源: Elsevier
PDF
【 摘 要 】

We propose a nonlinear conjugate gradient method for unconstrained optimization based on solving a new optimization problem. Our optimization problem combines the good features of the linear conjugate gradient method using some penalty parameters. We show that the new method is a subclass of Dai-Liao family, the fact that enables us to analyze the family, closely. As a consequence, we obtain an optimail bound for Dai-Liao parameter. The global convergence of the new method is investigated under mild assumptions. Numerical results show that the new method is efficient and robust, and outperforms CG-DESCENT. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2015_12_035.pdf 272KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次