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Abstract

We propose a nonlinear conjugate gradient method for unconstrained opti-
mization based on solving a new optimization problem. Our optimization
problem combines the good features of the linear conjugate gradient method
using some penalty parameters. We show that the new method is a subclass
of Dai-Liao family, the fact that enables us to analyze the family, closely.
As a consequence, we obtain an optimal bound for Dai-Liao parameter. The
global convergence of the new method is investigated under mild assump-
tions. Numerical results show that the new method is efficient and robust,
and outperforms CG-DESCENT.
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optimization, Line search

1. Introduction

Here, we consider the following unconstrained optimization problem,

min
x∈Rn

f(x), (1)

where f is a smooth function. Conjugate gradient algorithms are a class
of efficient methods for solving (1), specially, when n is large [1, 2, 3, 4, 5,
6, 7, 8, 9]. This class were originally invented by Hestenes and Stiefel [1]
for solving a symmetric and positive definite linear system of equations, and
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then was extended by many authors to handle general optimization problems
[10, 11].

In a conjugate gradient algorithm, a sequence of iterates, xk+1, are gen-
erated by the following scheme:

xk+1 = xk + αkdk, (2)

where the search direction dk is computed by

dk+1 = −gk+1 + βkdk, d0 = −g0. (3)

The step length αk > 0 usually satisfies the Wolfe conditions,

f(xk+1)− f(xk) ≤ c1αkg
T
k dk, (4)

gT
k+1dk ≥ c2g

T
k dk, (5)

where, 0 < c1 < c2 < 1 are some arbitrary constants and gk := ∇f(xk).
The linear conjugate gradient method uses (2) and (3) with the exact line

search to solve a strongly convex quadratic function. The method has some
remarkable properties:

(i) The sufficient descent condition, namely, there exists a scalar c > 0
such that

gT
k+1dk+1 ≤ −c ‖ gk+1 ‖2 . (6)

(ii) The conjugacy condition, namely,

dT
k+1yk = 0. (7)

(iii) The orthogonality property:

gT
k+1di = 0, (8)

for i = 0 . . . k.

It is known that a linear conjugate gradient algorithm always terminates
in finite iteration, and it is actually a remarkable property. Unfortunately,
this property can not be guaranteed for the nonlinear conjugate gradient
algorithms.

The good features of the linear conjugate gradient method persuade the
authors to follow this idea in nonlinear optimization. We refer the interested
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readers to the nice surveys of Hager and Zhang [10] and Dai [11] about
nonlinear conjugate gradient methods. Hager and Zhang [7] have recently
introduced an efficient nonlinear conjugate gradient method. Their method
is a subclass of Dai-Liao family corresponding to the choice

βDL
k =

gT
k+1yk − τgT

k+1sk

yT
k dk

, (9)

with τ = λk
‖yk‖2
sT
k yk

. They proved the global convergence of a truncated ver-

sion of the method similar to PRP+ of Gilbert and Nocedal [12] under mild
assumptions. Numerical results showed that the method outperforms many
existing conjugate gradient methods. Nowadays, it is known as a most effi-
cient conjugate gradient method. An implementation of the method called
CG-DESCENT is now available from the Hager’s homepage.

In order to design an efficient nonlinear conjugate gradient method, we
combine (i)-(iii), and introduce the following optimization problem:

min
βk

[
gT

k+1dk+1 + M

(
(gT

k+2sk)
2 + (dT

k+1yk)
2

)]
, (10)

where M is a penalty parameter. The first term in (10) contains the infor-
mation about (i), whereas, the second one contains the information about
(ii) and (iii). A large value of M clearly increases the chance of satisfying
(ii) and (iii), and a small one increases the effect of the sufficient descent
property (i).

More recently in [13], we used the same idea, and proposed an optimal
parameter for Dai-Liao family of conjugate gradient methods. In this work,
we pay attention to M and introduce an efficient penalty parameter, hav-
ing some useful properties. A new expression for βk is then obtained by
solving (10). We show that the resulting method is a subclass of Dai-Liao
family. This observation enables us to closely analyze Dai-Liao family. As a
consequence, we show that the optimal Dai-Liao parameter should be some-
where in interval (0, 1

2
). We also investigate the global convergence of the

method under suitable assumptions. Finally, we show that the new method
is efficient, and outperforms CG-DESCENT.

The paper is organized as follow: In Section 2, we present some moti-
vations and background of the method. Introducing penalty parameter M
is the subject of Section 3. The global convergence of the new method is
investigated in Section 4, and numerical results are reported in Section 5.
Finally, conclusions and discussions are made in the last section.
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2. Motivations and backgrounds

In this section, we introduce a new family of conjugate gradient methods
by solving (10).

To solve (10), we should replace gk+2 by some of its appropriate estima-
tion, because it is not available in the current iteration.

Here, we consider the quadratic approximation of the objective function,

Φ(d) = fk+1 + gT
k+1d +

1

2
dT Bk+1d,

and, take ∇Φ(αk+1dk+1) as an estimation of gk+2. It is easy to see that

∇Φ(αk+1dk+1) = αk+1Bk+1dk+1 + gk+1. (11)

Now, we modify (11) and set

gk+2 := tBk+1dk+1 + gk+1, (12)

where, t > 0 is a suitable approximation of αk+1. Substituting (3) and (12)
in (10), we obtain

βk =
1

X

[
− gT

k+1dk + 2Mt2(sT
k Bk+1gk+1)(s

T
k Bk+1dk) (13)

− 2Mt(sT
k gk+1)(s

T
k Bk+1dk)

+ 2M(yT
k gk+1)(y

T
k dk)

]
,

where
X = 2Mt2(sT

k Bk+1dk)
2 + 2M(yT

k dk)
2.

To simplify (13), we use the secant condition Bk+1sk = yk, and obtain the
new formula

βk =
−1

2M(1 + t2)

gT
k+1dk

(yT
k dk)2

+
yT

k gk+1

yT
k dk

− t

(1 + t2)

sT
k gk+1

yT
k dk

. (14)

2.1. An optimal bound for Dai-Liao parameter

Consider the method (2) and (3) with βk in (14), let M approaches infin-
ity, we have

βk =
yT

k gk+1

yT
k dk

− t

(1 + t2)

sT
k gk+1

yT
k dk

. (15)
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This βk would seem to be the most efficient conjugate gradient parameter,
because it increases the probability of satisfying (ii) and (iii), making the
method to reflect the good features of the linear conjugate gradient algorithm.
It is easy to see that (15) is a member of Dai-Liao family with τ = t

1+t2
. Since

τ ∈ (0, 1
2
], it is reasonable to claim that the optimal Dai-Liao parameter τ

should be somewhere between 0 and 1
2
.

Unfortunately, we have some difficulties to ensure the sufficient descent
condition of the search direction dk+1 when it is computed using (15). Obvi-
ously, the sufficient descent information are lost when M approaches infinity.

3. The sufficient descent direction

In this section, we intended to overcome the difficulties addressed in Sec-
tion 2.1 by introducing a suitable penalty parameter M .

As we mentioned earlier, a suitable penalty parameter M should have the
two important properties. Firstly, the search direction dk+1 equipped with
βk in (14) must satisfy (i), and secondly, M should approach infinity during
the iterations. In the following lemma, we propose such a suitable penalty
parameter.

Lemma 1. Assume the method (2) and (3) with the standard Wolfe line
search, where βk is defined in (14), then, for some positive scalars γ1 and γ2

satisfying γ1 + γ2 < 1, we have

gT
k+1dk+1 ≤ −(1− γ1 − γ2) ‖ gk+1 ‖2, (16)

whenever

|t− 1| ≤
(

2γ2(y
T
k sk)

‖ sk ‖2

) 1
2

, (17)

and

M =
2γ1

(1 + t2) ‖ yk − λk

2
sk ‖2

, (18)

where λk ≤ 1 is an arbitrary scalar.

Proof. We prove lemma by mathematical induction. It is easy to see using
(3) that gT

0 d0 = − ‖ g0 ‖2≤ −(1− γ1 − γ2) ‖ g0 ‖2. Now, assume

gT
k dk ≤ −(1− γ1 − γ2) ‖ gk ‖2, (19)
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we show that (16) holds. Note that using (5) and (19), we have

yT
k dk = gT

k+1dk − gT
k dk ≥ (c2 − 1)gT

k dk > 0. (20)

Using (3) and (14), we have

gT
k+1dk+1 = − ‖ gk+1 ‖2 +

(yT
k gk+1)(g

T
k+1sk)

yT
k sk

− 1

2M(1 + t2)

(gT
k+1sk)

2

(yT
k sk)2

− t

(1 + t2)

(sT
k gk+1)

2

yT
k sk

.

Since λk ≤ 1, we also have λk(s
T
k gk+1)

2 ≤ (sT
k gk+1)

2, and so, using (20)

gT
k+1dk+1 ±

(sT
k gk+1)

2

2yT
k sk

≤ − ‖ gk+1 ‖2 +
(yk − λk

2
sk)

T gk+1(g
T
k+1sk)

yT
k sk

− 1

2M(1 + t2)

(gT
k+1sk)

2

(yT
k sk)2

+
(1

2
− t

1 + t2
)(sT

k gk+1)
2

yT
k sk

.

Now, using the following inequality:

ab ≤ t′

4
a2 +

1

t′
b2,

where a, b and t′ are positive scalars, we have

gT
k+1dk+1 ≤ − ‖ gk+1 ‖2 +

t′

4

(
(yk −

λk

2
sk)

T gk+1

)2
+

1

t′
(gT

k+1sk)
2

(yT
k sk)2

− 1

2M(1 + t2)

(gT
k+1sk)

2

(yT
k sk)2

+
(t− 1)2

2(1 + t2)

(sT
k gk+1)

2

yT
k sk

.

Let t′ = 2M(1 + t2),

gT
k+1dk+1 ≤ − ‖ gk+1 ‖2 +

M(1 + t2)

2

(
(yk −

λk

2
sk)

T gk+1

)2

+
(t− 1)2

2(1 + t2)

(sT
k gk+1)

2

yT
k sk

.

Finally, the Cauchy-Schwarz inequality implies

gT
k+1dk+1 ≤ −

[
1−M(1 + t2)

2
‖ yk −

λk

2
sk ‖2 − (t− 1)2

2(1 + t2)

‖ sk ‖2

yT
k sk

]
‖ gk+1 ‖2 .

(21)

Now, the proof is completed using (17), (18) and (21). �
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In follow, we present some remarks concerning to Lemma 1

Remark 1. Interestingly, we can use λk to accelerate the growth-rate of M .
More exactly, we set

λk = min(1,
2sT

k yk

‖ sk ‖2
), (22)

which minimizes the denominator of (18).

Remark 2. In Newton type algorithms, it is common to set αk = 1, initially,
because it finally leads to quadratic convergence. However, the step size
variations are not predictable in conjugate gradient algorithms. Thus, we
use the following heuristic to update t.

t =





αk, |αk − 1| ≤
(

2γ2(yT
k sk)

‖sk‖2

) 1
2

,

1 +

(
2γ2(yT

k sk)

‖sk‖2

) 1
2

, O.W.

(23)

Note that substituting (18) in (14), we have

βk =
yT

k gk+1

yT
k dk

− t

1 + t2
gT

k+1sk

yT
k dk

− ‖ yk − λk

2
sk ‖2

4γ1

(gT
k+1dk)

(yT
k dk)2

, (24)

which converts to the most desirable case of (15), when ‖ yk − λk

2
sk ‖= 0.

4. Global convergence

We now analyze the global convergence of the method (2), (3) and (24)
with λk and t defined in (22) and (23), respectively.

Here, we assume that the step length αk satisfies the standard Wolfe
conditions (4) and (5). The following standard assumptions are considered
in this section:

(A1) The gradient vector g is Lipschitz continuous; namely, there exists a
constant L > 0 such that

‖ ∇f(x)−∇f(y) ‖≤ L ‖ x− y ‖, x, y ∈ Rn.
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(A2) f(x) is a differentiable and bounded below function on the level set

L = {x ∈ Rn | f(x) ≤ f(x0)}.

(A3) The generated sequence of iterates, xk, is bounded.

The global convergence of descent methods with standard Wolfe line search
essentially relies on the following Zoutendijk condition.

Lemma 2. suppose that A1-A3 holds. consider any descent method of the
form (2) where αk is determined by standard Wolfe line search. Then we
have that ∞∑

k=1

(gT
k dk)

2

‖ dk ‖2
< ∞. (25)

The global convergence analysis of this section is basically similar to that of
Hager and Zhang in [7].

4.1. Global convergence for strongly convex functions

First, we have the following definition:

Definition 1. A differentiable function f is called strongly convex, if there
exists a constant µ > 0 such that

µ ‖ x− y ‖2≤ (∇f(x)−∇f(y))T (x− y),

for all x, y ∈ L.

Fortunately, we can prove the global convergence of the method without any
modification of βk when f is strongly convex.

Theorem 3. Assume the method (2) and (3) with βk defined in (24) is im-
plemented on a strongly convex function f , then, we have limk→∞ gk = 0.

Proof. We first show that the search direction dk+1 is bounded above.
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Using (A1), Definition 1, Cauchy-Schwarz inequality and the fact that
µαk ‖ dk ‖2 ≤ yT

k dk, we have

|βk| ≤
‖ yk ‖‖ gk+1 ‖
µαk ‖ dk ‖2

+
t

1 + t2
‖ sk ‖‖ gk+1 ‖
µαk ‖ dk ‖2

+
‖ yk − λk

2
sk ‖2‖ dk ‖‖ gk+1 ‖

4γ1µ2 ‖ dk ‖4 α2
k

≤ (L + 1) ‖ sk ‖‖ gk+1 ‖
µαk ‖ dk ‖2

+
(L + 1)2 ‖ sk ‖2‖ dk ‖‖ gk+1 ‖

4γ1µ2 ‖ dk ‖4 α2
k

≤ (L + 1) ‖ gk+1 ‖
µ ‖ dk ‖

+
(L + 1)2 ‖ gk+1 ‖

4γ1µ2 ‖ dk ‖

≤
(L + 1

µ
+

(L + 1)2

4γ1µ2

)‖ gk+1 ‖
‖ dk ‖

.

Now,

‖ dk+1 ‖≤‖ gk+1 ‖ +|βk| ‖ dk ‖≤
(L + 1

µ
+

(L + 1)2

4γ1µ2

)
‖ gk+1 ‖ . (26)

As a consequence, (16), (26) and the Zoutendijk condition imply that

∞∑

k=1

‖ gk ‖2< ∞,

which completes the proof. �

4.2. Global convergence for general functions

Here, we consider the following modification of βk:

βT
k = max(βk, χk), (27)

where χk is a real valued function having the following properties:

(p1) |χk| ‖ dk ‖ is bounded above.

((p2)) For some ǫ < 1,

χk ≤
ǫ ‖ gk+1 ‖2

gT
k+1dk

,

whenever gT
k+1dk > 0.

Note that, (p1) and (p2) ensure that the search direction dk is bounded, and
the sufficient descent property (6) holds, respectively.
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Lemma 4. Suppose the method (2) and (3) with βT
k defined in (27). More-

over, assume that the standard Wolfe line search conditions (4) and (5) are
used, then

gT
k+1dk+1 ≤ −max(1− ǫ, 1− γ1 − γ2) ‖ gk+1 ‖2, (28)

Proof. If βT
k = βk, then (16) implies that

gT
k+1dk+1 ≤ −(1− γ1 − γ2) ‖ gk+1 ‖2 .

If βT
k = χk and gT

k+1dk < 0, then our previous analysis and the fact that
βk ≤ χk imply that

gT
k+1dk+1 = − ‖ gk+1 ‖2 +χkg

T
k+1dk ≤ − ‖ gk+1 ‖2 +βkg

T
k+1dk

≤ −(1− γ1 − γ2) ‖ gk+1 ‖2 .

If βT
k = χk and gT

k+1dk > 0, then (p2) implies

gT
k+1dk+1 = − ‖ gk+1 ‖2 +χkg

T
k+1dk

≤ −(1− ǫ) ‖ gk+1 ‖2 .

Now, the proof is completed. �

The following lemma is analogue of Lemma 4.3 in [14]

Lemma 5. Suppose A1-A3 holds, then for method (2) and (3) with βT
k de-

fined in (27), and a line search satisfying standard Wolfe conditions, then,
we have ∞∑

k=1

‖ uk − uk−1 ‖2< ∞,

where, uk = dk

‖dk‖ , whenever inf ‖ gk ‖6= 0.

Proof. The proof is basically similar to Lemma 4.3 in [14]. We let

z
(1)
k = max(βk − χk, 0),

and
z

(2)
k = χk.
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It is easy to see that βT
k = z

(1)
k + z

(2)
k . Let

wk =
−gk + z

(2)
k−1dk−1

‖ dk ‖
,

and

δk =
z

(1)
k−1 ‖ dk−1 ‖
‖ dk ‖

.

Following the statements of the proof of Lemma 4.3 in [14], we reach to

‖ uk − uk−1 ‖≤ 2 ‖ wk ‖,

Since we assumed that |χk| ‖ dk ‖ is bounded, there exists a constant ǫ > 0
such that

‖ −gk + z
(2)
k−1dk−1 ‖≤‖ gk ‖ +|χk−1| ‖ dk−1 ‖≤ ǫ.

Thus,

‖ uk − uk−1 ‖≤
2ǫ

‖ dk ‖
.

Now, the proof is completed using (28) and the Zoutendijk condition. �

There are some special choices of χk in literatures. For example, the Hager
and Zhang choice of

χk =
−1

‖ dk ‖ min(η, ‖ gk ‖)
, (29)

and the Dai and Kou choice of

χk = η
gT

k+1dk

‖ dk ‖2
.

We now state the main result.

Theorem 6. Suppose that A1-A3 holds. If the method (2) and (3) with
βT

k defined in (27) is implemented on f and the standard Wolfe line search
conditions (4) and (5) are used, then

lim inf
k→∞

‖ gk ‖= 0.
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Proof. Assume that there exists η1 such that ‖ gk ‖> η1 for all k.
If there exists a subsequence kj such that βT

kj
= χkj

, then, using (p1), we
have for some ǫ > 0,

‖ dkj+1 ‖ =‖ −gkj+1 + βT
kj

dkj
‖≤‖ gkj+1 ‖ +|χkj

| ‖ dkj
‖≤ ǫ.

This bound for dkj+1 and (28) yield a contradiction using Zoutendijk condi-
tion.

We now assume that βT
k = βk for sufficiently large k. Following the

statements of the proof of Theorem 3.2 in [7], we only address the changes
in the parts of the proof.

Part I. (A bound for βk) Using inequalities

yT
k dk ≥ (1− c2) max(1− ǫ, 1− γ1 − γ2)η

2
1, (30)

and
|gT

k+1dk|
|yT

k dk|
≤ max(

c2

1− c2

, 1), (31)

see [7], we show that there exists a constant C > 0 such that

|βk| ≤ C ‖ sk ‖ . (32)

It is easy to see using (24) that

|βk| ≤
|yT

k gk+1|
yT

k dk

+
‖ yk − λk

2
sk ‖2 |gT

k+1dk|
4γ1(yT

k dk)2
+

t

(1 + t2)

|sT
k gk+1|
yT

k dk

.

Now, t
1+t2

< 1 implies that

|βk| ≤
1

yT
k dk

[
|yT

k gk+1|+ ‖ yk −
λk

2
sk ‖2 |gT

k+1dk|
yT

k dk

+ |sT
k gk+1|

]
.

Using Cauchy-Schwarz inequality,

|βk| ≤
1

yT
k dk

[
η2L ‖ sk ‖ +

(L + 1)2

4γ1

‖ sk ‖2 |gT
k+1dk|
yT

k dk

+ η2 ‖ sk ‖
]
. (33)

where η2 is an upper bound on ‖ gk ‖.
Now, it is easy to see from (33) that using (A1), (A3), (30) and (31),

there exist a constant C > 0 such that (32) holds. The rest of the proof is
essentially similar to Theorem 3.2 in [7]. �
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5. Numerical results

We now investigate the numerical comparisons of our algorithms, that
is, the method (2), (3) and (24) with λk and t defined in (22) and (23),
respectively, with a modification version of original CG-DESCENT [7] based
on the work by Dai and Kou [14]. The two algorithm were coded in MATLAB
2007 and tested on a 2.4 Intel Core 2Duo processor computer with 2GB of
RAM. We compare the two algorithms on 154 unconstrained problems of
CUTEr collection [15]. The performance profile of Dolan and Moré [16] is
used to compare the efficiency of the algorithms. Furthermore, we used the
CG-DESCENT line search procedure with the initial parameters reported in
[7]. As in the CG-DESCENT, algorithms terminate if either

‖ ∇f(xk) ‖∞≤ max(10−6, 10−12 ‖ ∇f(x1) ‖∞),

or the number of iterations exceed 50000. The problems CLPLATE(A-
C), NONMSQRT, NONCVXUN, RAYBEND(L-S), SBRYBND, SCOSINE
and SCURLY(10-30) were removed, because the iteration count limit was
reached, for the two algorithms, before having the chance to detect conver-
gence . The MATLAB codes and raw data of numerical tests are available
from website:

WWW.wp.kntu.ac.ir/smfatemi/publications.htm

We choose γ1 = 0.98 and γ2 = 0.01 in our numerical test. These values
clearly ensure that the penalty parameter M in (18) is as large as possible.

Figures 1-4 show the performance profile for the number of iteration, the
number of function and gradient evaluations and CPU time. As these figures
indicate, the new algorithm outperforms CG-DESCENT in every respect.
This clearly confirms the effectiveness of the new method.

6. Conclusions

We have presented a nonlinear conjugate gradient method for uncon-
strained optimization based on solving a new optimization problem. We
showed that the new method is a subclass of Dai-Liao family, the fact that
enabled us to analyze the family, closely. As a consequence, an optimal bound
for Dai-Liao parameter is presented. The global convergence of the method
was investigated under mild assumptions. The numerical comparing results
indicated that the new method is efficient and outperforms CG-DESCENT.
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Figure 1: Iteration performance profile.
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Figure 2: Number of function evaluation performance profile.
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Figure 3: Number of gradient evaluation performance profile.
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