期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:315
A robust WG finite element method for convection-diffusion-reaction equations
Article
Chen, Gang1  Feng, Minfu1  Xie, Xiaoping1 
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
关键词: Convection-diffusion-reaction equations;    Weak Galerkin finite element;    A priori error estimate;   
DOI  :  10.1016/j.cam.2016.10.029
来源: Elsevier
PDF
【 摘 要 】

This paper proposes and analyzes a weak Galerkin (WG) finite element method for 2- and 3-dimensional convection-diffusion-reaction problems on conforming or nonconforming polygon/polyhedral meshes. The WG method uses piecewise-polynomial approximations of degrees k (k >= 0) for both the scalar function and its trace on the inter-element boundaries. We show that the method is robust in the sense that the derived a priori error estimates is uniform with respect to the coefficients for sufficient smooth true solutions. Numerical experiments confirm the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2016_10_029.pdf 1292KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次