期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:381
An extended P1-nonconforming finite element method on general polytopal partitions
Article
Liu, Yujie1,2  Wang, Junping3 
[1] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen 518005, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan, Peoples R China
[3] Natl Sci Fdn, Div Math Sci, Alexandria, VA 22314 USA
关键词: Convection-diffusion-reaction equations;    P-1-nonconforming method;    Polytopal partition;    Weak Galerkin;    Finite element methods;    Error estimates;   
DOI  :  10.1016/j.cam.2020.113021
来源: Elsevier
PDF
【 摘 要 】

An extended P-1-nonconforming finite element method is developed in this article for the Dirichlet boundary value problem of convection-diffusion-reaction equations on general polytopal partitions. This new method was motivated by the simplified weak Galerkin method, and makes use of only the degrees of freedom on the boundary of each element and, hence, has reduced computational complexity. Numerical stability and optimal order of error estimates in H-1 and L-2 norms are established for the corresponding numerical solutions. Some numerical results are presented to computationally verify the mathematical convergence theory. A superconvergence phenomenon on rectangular partitions is noted and illustrated through various numerical experiments. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_113021.pdf 1335KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:3次