期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:376
On the local and semilocal convergence of a parameterized multi-step Newton method
Article
Amat, S.1  Argyros, I2  Busquier, S.1  Hernandez-Veron, M. A.3  Yanez, D. F.4 
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Univ La Rioja, Dept Matemat & Comp, Logrono, Spain
[4] Univ Valencia, Dept Matemat, Valencia, Spain
关键词: Iterative processes;    Multi-step Newton's method;    Local convergence;    Semilocal convergence;   
DOI  :  10.1016/j.cam.2020.112843
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to a family of Newton-like methods with frozen derivatives used to approximate a locally unique solution of an equation. We perform a convergence study and an analysis of the efficiency. This analysis gives us the opportunity to select the most efficient method in the family without the necessity of their implementation. The method can be applied to many type of problems, including the discretization of ordinary differential equations, integral equations, integro-differential equations or partial differential equations. Moreover, multi-step iterative methods are computationally attractive. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_112843.pdf 343KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次